
   

Disponible en www.hormigonyacero.com 
Hormigón y Acero, 2025 

https://doi.org/10.33586/hya.2025.3160 

 
 
 
ARTÍCULO EN AVANCE ON LINE 
 
 
An Analytical Model of Simply Supported Steel-Concrete Composite Beam With Bi-Linear 
Behavior of the Shear Connection Including Ductility: Formulation and Comparison With 
Numerical Results 
Francesco Profico & Zanon Riccardo 
 

DOI: https://doi.org/10.33586/hya.2025.3160 
 
Para ser publicado en: Hormigón y Acero 
 
Por favor, el presente artículo debe ser citado así:  
Profico, F., Riccardo, Z. (2025) An Analytical Model of Simply Supported Steel-Concrete 
Composite Beam With Bi-Linear Behavior of the Shear Connection Including Ductility: 
Formulation and Comparison With Numerical Results, Hormigón y acero, 
https://doi.org/10.33586/hya.2025.3160 
 
 
Este es un archivo PDF de un artículo que ha sido objeto de mejoras propuestas por dos 
revisores después de la aceptación, como la adición de esta página de portada y metadatos, y 
el formato para su legibilidad, pero todavía no es la versión definitiva del artículo. Esta versión 
será sometida a un trabajo editorial adicional, y una revisión más antes de ser publicado en su 
formato final, pero presentamos esta versión para adelantar su disponibilidad. 
En el proceso editorial y de producción posterior pueden producirse pequeñas modificaciones 
en su contenido.  
 

© 2025 Publicado por CINTER Divulgación Técnica para la Asociación Española de Ingeniería 
Estructural, ACHE 

http://www.hormigonyacero.com/
https://doi.org/10.33586/hya.2025.3160


Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE1

An Analytical Model of Simply Supported Steel-Concrete2

Composite Beam With Bi-Linear Behavior of the Shear3

Connection Including Ductility: Formulation and Comparison4

With Numerical Results5

Profico Francesco, MSc* | Zanon Riccardo, MSc6

1Steligence Engineering, ArcelorMittal,
Luxembourg
Correspondence
*Francesco Profico, 66, Rue Du
Luxembourg, Esch-Sur-Alzette -
Luxembourg. Email:
francesco.profico@arcelormittal.com
Present Address
66, Rue Du Luxembourg, Esch-Sur-Alzette -
Luxembourg

Abstract

An analytical model of simply-supported composite beams is described. A bi-linear
law of the shear flow-slip behavior of the shear connection is considered. The influ-
ence of the plastic hardening and ductility of the shear connection are included in the
model. A formula to predict the end-slip of a generic simply-supported composite
beam is derived. Themodel includes the cases of partial and full shear connection and
of elastic and plastic design of the shear connection. The analytical model predictions
are compared and checked against the results of a one-dimensional numerical model
of composite beam including non-linearity. The comparison reveals a substantial
agreement between the novel analytical formulas and the numerical model.
KEYWORDS:
Composite beams; Shear connection; Analytical model; End-slip; Partial-shear
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1 INTRODUCTION8

Composite steel-concrete beams are in the European framework designed according to Eurocode 41 (EC4). These can be used9

both for buildings and bridges. The design of the shear connection can be in general elastic or plastic2. While in the case of10

composite bridges design only a slight plastic redistribution is admitted, in the case of buildings EC4 opens to a plastic design11

of the shear connection. The design of elements in partial shear connection is highly affected by the resistance of the shear12

connection itself3. The reduction of bending resistance of the section must be considered with the use of the Partial Shear13

Diagram. The slip demand on the shear connection is higher as the shear connection yields approaching the member ultimate14

load. In the case of plastic design ductile shear connectors must be used. EC4 defines ductile shear connectors as the ones15

reaching a minimum plastic slip of 6 mm. Typically headed stud shear connectors are used as shear connectors as the ductility16

requirement imposed by EC4 is satisfied and specific design rules are provided already by the codes. The design of composite17

beams can be done both in full and partial shear connection. The degree of shear connection � is a key parameter to predict18

the composite beam behaviour. EC4 imposes limitations to the use of partial shear connection in buildings. A minimum degree19

of shear connection is imposed by EC4. These limitations are strictly calibrated for the value of 6 mm of slip capacity. The20

minimum degree of shear connection mainly depends on section symmetry, the steel yield resistance and the composite beam21

member length. These limitations are more severe for longer elements. The limitations are more strict for more asymmetric22

beams and higher steel grades. The limit exists mainly because in a low degree of shear connection a higher plastic deformation23

capacity is required to the shear connection. If a simply supported beam is considered, the highest plastic slip capacity is required24
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at the end of the beam. The beam end-slip is generally observed to sharply increase as the ultimate bearing capacity of the beam25

is approached. The slip demand becomes more severe for lower degree of shear connection. In order to guarantee a consistent26

structural design of the composite beam, EC4 introduces limitations in terms of minimum degree of shear connection. This to27

prevent that, for low degree of shear connection the slip demand on the shear connection is higher compared with the plastic28

slip capacity minimum threshold of 6 mm. Some observations in numerical analysis were done in4 with the purpose to propose29

a slip-capacity dependent formulation, taking into account the effect of highly asymmetric steel part sections.30

The plastic calculation is done assuming a rigid-plastic behavior of the shear connection. This leads to the introduction of the31

concept of degree of shear connection. The consistency of this assumption heavily relies on the fact that typical shear connection32

means as head-studs show a high ductility with low hardening ratio. Hence, the hypothetical rigid-plastic behavior is effectively33

well representing this behavior. From a rigid-plastic behavior is however not possible to derive an estimation of the slip demand.34

Analytically derived formulations to predict this are at the current state missing. The influence of parameters like the first35

yield slip, the ductility of the shear connection and the hardening ratio in the plastic branch are at the current state missing. A36

model providing analytical formulations and correctly linking the limit cases of perfectly elastic connection and rigid-plastic37

connection is at the current state not existing. This would be of extreme interest especially in the frame of the elaboration of38

the forthcoming next generation version of EC4. This in fact will generalize the design, facilitating the calculation process for39

different connection means compared to head-studs and trying to correctly include the effect of mechanical behaviors highly40

different from rigid-plastic ones.41

Analytical methods describing the mechanical behaviour of a composite beam exist already5. In the present article a specific42

one is presented which main aim is to describe the influence of key parameters as the shear connection ductility, ultimate slip43

and the plastic hardening. This is done considering the effect of the load ratio and the degree of shear connection. The results44

predicted by the derived formulations are compared with the respective ones obtained from a one-dimensional finite-difference45

method of a composite beam implementing both the shear connection non-linearity and the cross-section non-linearity. For this46

implementation reference to6 is made.47

2 REVIEW OF COMPOSITE BEAMS MECHANICS48

Composite steel-concrete beams are structural elements composted by a concrete and a steel part. These are connected by means49

of a shear connection. The shear connection transfers longitudinal shear. It allows for reaching the composite action of the two50

parts.51

The mechanical behavior of the shear connection strongly affects the mechanical behavior of the composite element. Concrete52

and steel materials can exhibit non-linear behavior. The shear connection can show non-linear behavior as well.53

2.1 Kinematic compatibility and equilibrium equations of shear connection54

For equilibrium on the concrete part, a variation in the concrete compression force Nc is balanced by the presence of a55

longitudinal shear vL. In Equation 1 the equilibrium is expressed in differential and integral form.56

dNc(x)
dx

= −vL(x) ←→ Nc(x) = Nc(x0) −

x

∫
x0

vL(x′) dx′ (1)

Note that a distinction between x and x′ is used only for mathematical formality, distinguishing the function variable from the57

integration variable respectively.58

For kinematic compatibility the derivative of slip � is related with the slip strain �slip. The relation is described by Equation59

2 in differential and integral form.60

d�(x)
dx

= �slip(x) ←→ �(x) = �(x0) +

x

∫
x0

�slip(x′) dx′ (2)
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2.2 Connection shear flow-slip behaviour61

The shear connection is generally composed by shear connectors. These can be arranged in more than one line and present non-62

uniform spacing. In the present article a constant number of lines is assumed along the beam. Moreover, a uniform spacing ex63

of connectors is assumed.64

The number of rows of shear connectors present between the mid-span and the support section is calculated according to65

Equation 3:66

n =
L∕2
ex

(3)
Shear connectors have in general a non-linear shear force-slip behavior P − � (Equation 4).67

P (�) Shear force-slip behavior of connector (4)
A shear flow-slip behaviour of the shear connection is defined by dividing the shear force-slip law of the uniformly spaced lines68

of connectors by the spacing ex, properly considering the number of connectors present in a line (Equation 5).69

vL(�) =
P (�)
ex

Shear flow-slip behavior of shear connection (5)
If the yield force of the shear connector is denoted as Py, a yield shear flow can be defined as Equation 6.70

vL,y =
Py
ex

Yield shear flow (6)

2.3 Composite section behaviour71

The characterisation of the composite sectionmechanical behaviour can be done via a Strain Limited (SL) analysis. The research6
72

is used as reference. A linear distribution of strains is assumed on the two parts of the section. The deformation state is described73

by the strain slip �slip, the curvature (1∕r) and by specifying an additional strain �0 for one fibre of the section. The stress74

distributions are consequence of �− � laws associated to the materials. The resultants of the bending momentM and axial force75

N are derived by integrating the stress distributions over the section under a defined deformation state. The number of free76

parameters reduces to two by imposing the condition of pure bendingN = 0. The composite section behaviour is described by77

a surface (Equation 7). This surface is named Partial Shear Surface (PSS). Both the concrete compressionNc and the moment78

resultant on the section can be expressed as function of the kinematic variables slip strain �slip and curvature (1∕r).79

{

M(�slip, (1∕r)) =M(�slip(x), (1∕r)(x))
Nc(�slip, (1∕r)) = Nc(�slip(x), (1∕r)(x))

(7)

If the surface has monotonic behavior, the relation can be inverted. The slip strain �slip and the curvature (1∕r) can be described80

by Equation 8).81

{

�slip(M,Nc) = �slip(M(x), Nc(x))
(1∕r)(M,Nc) = (1∕r)(M(x), Nc(x))

(8)

In conditions of Full Shear Interaction (FSI) the slip strain �slip is zero. The Ultimate Limit State of the section is dependent82

on the slip strain �slip. The associated ultimate curvature is (1∕r)u(�slip). At Ultimate Limit State (ULS) in FSI conditions the83

quantities of Equation 9 can be defined.84

Mpl,f =M(�slip = 0, (1∕r)u) (9)
Ncf = Ncf (�slip = 0, (1∕r)u) (10)

The Partial Shear Diagram (PSD) is composed by the set of pointsM(�slip), Nc(�slip) in theM −Nc plane. These points are85

ULS points derived with ultimate curvature (1∕r)u. This is a function of the strain slip �slip. These points are derived as function86

of the parameter �slip Equation 11:87

{

M(�slip) =M((�slip, (1∕r)u(�slip)))
Nc(�slip) = Nc((�slip, (1∕r)u(�slip)))

(11)
88
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Figure 1 static scheme of the simply supported composite beam with reference system. Below a qualitative example of the
relevant distributions is shown.

2.4 Degree of shear connection89

The composite section experiences a force on the concrete partNc(x = L∕2) at mid-span. In the support region no external force90

is applied on the concrete part. The boundary conditionNc(x = L∕2) = 0 should be satisfied. For equilibrium reasons the shear91

connection transfers a force of Nc between the mid-span section and the support section. The mean shear flow is Nc∕(L∕2).92

The degree of shear connection is defined as Equation 12:93

� = n
nf

=
n ⋅ Py
Ncf

(12)

In Full Shear Connection cases (FSC) the connection is sufficiently resistant to transfer the force Ncf . Namely (Equations 1394

and 14):95

� =
n ⋅ Py
Ncf

≥ 1 FULLS SHEAR CONNECTION (FSC) (13)

In the opposite case the shear connection is not sufficiently resistant to transfer the force:96

� =
n ⋅ Py
Ncf

< 1 PARTIAL SHEAR CONNECTION (PSC) (14)

By substituting Equation 6 and Equation 3 in Equation 12, the relation of Equation 15 is derived:97

Ncf =
1
�
⋅
L ⋅ vL,y
2

(15)

3 ANALYTICAL MODEL FORMULATION98

3.1 Assumptions99

The model is based on the following assumptions:100
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Figure 2 basic principles governing the mechanical behavior of the composite beam
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Figure 3 schematic representation of the theory governing the mechanical behavior of the simply supported composite element.
The coupling of the different distribution is described

• A simply supported element of span-length L is considered with degree of shear connection �. The composite section of101

the element is constant. In Full Shear Interaction at ULS the resultant compression force on the concrete part isNcf .102

• A constant slip strain along the beam is assumed. Namely (Equation 16):103

�slip(x) = �slip = const. (16)
This constitutes a strong simplification hypothesis.104

• The shear connection behaviour is described by a bi-linear model. In correspondence of the slip �y the yield point is105

reached and the shear flow is vL,y. The hardening factor � is the ratio between the post-yield stiffness and the first elastic106
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Figure 6 observed ductility values for the given shape

branch stiffness. The law is described by Equation 17:107

vL(�) =

⎧

⎪

⎨

⎪

⎩

vL,y
�y

⋅ � � < �y
vL,y + � ⋅

vL,y
�y

⋅ (� − �y) � ≥ �y
(17)
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Figure 7 Bi-linear mechanical shear flow-slip model of the shear connection and related limit cases

• the parameter �u defines a limit of slip for the shear connection. At this slip the shear connection reaches failure. The108

ductility is defined as the ratio � = �u∕�y.109

• at mid-span a concrete compression forceNc is applied on the section. For equilibrium (Equation 1), applying the proper110

boundary conditions, the following condition should be satisfied (Equation 18). A loading ratio r describes the loading111

level. This is defined as the ratio between the applied force Nc and the one corresponding to ULS in FSI conditions,112

namely:113

x=L∕2

∫
x=0

vL(x) dx = Nc = r ⋅Ncf (18)

As consequence of the these hypothesis the slip varies linearly between the mid-span section and the support section (Equation114

19):115

�(x) = �slip ⋅ x (19)
In case �max ≥ �y the shear connection is yielded. In this case the coordinate where the coordinate xy where yield is reached,116

closer to mid-span can be computed by equating �y = �(x), thus deriving xy from Equation 20.117

xy = �y∕�slip (20)
The parameter � is introduced as Equation 21. This parameter represents the non-dimensional elastic length.118

� =
�y∕�slip
L∕2

(21)
In cases � > 1 the shear connection is in the elastic phase. In case � ≤ 1, the shear connection is yielded. The end-slip �max can119

be computed as Equation 23):120

�max = �slip ⋅ L∕2 (22)
From the mean-value theorem of calculus:121

�max = �(x = 0) +

x′=L∕2

∫
x′=0

�slip(x′) dx′ = �(x = 0) + �slip

x′=L∕2

∫
x′=0

dx′ = �slip ⋅ L∕2 (23)

Note: a distinction between x and x′ is used only for mathematical formality, distinguishing the function variable from the122

integration variable respectively. Therefore, the calculation of the end-slip �max under hypotheses 16 and the integral coming123

from a generic distribution �slip from calculus, coincide. If the model is able to exactly estimate the mean strain slip �strain, the124
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model would deliver a correct estimation of the end-slip �max. As consequence of the two assumptions 16 and 5, the shear flow125

varies along the coordinate as described by Equation 24:126

vL(x) = vL(�(x)) =

⎧

⎪

⎨

⎪

⎩

vL,y
�y

⋅ �slip ⋅ x x < �y∕�slip
vL,y + � ⋅

vL,y
�y

⋅ (�slip ⋅ x − �y) x ≥ �y∕�slip
(24)

The shear-flow over-strength at support is denoted as � and is hereby defined as Equation 25:127

� =
vL(x = L∕2)

vL,y
=
vL(�(x = L∕2))

vL,y
(25)

The non-dimensional integral of the shear flow-slip model is defined (Equation 26).128

Ψ(�, �) = 1
vL,y ⋅ �u

�=�u

∫
�=0

vL(�) d� =
�(�2 − 2� + 1) + 2� − 1

2�
(26)

The non-dimensional integral of the shear flow-slip model assumes the values (Equation 27):129

⎧

⎪

⎨

⎪

⎩

Ψ(� = 1, �) = 1∕2
Ψ(� →∞, � = 0)→ 1
Ψ(� →∞, � > 0)→∞

(27)

The non-dimensional capacity of shear connection respect to the applied force is defined (Equation 28). This can be linked130

to the non-dimensional integral of the shear flow-slip model and the degree of shear connection using Equations 15 and 26.131

�∗(�, �, �) = 1
Ncf

⋅

x=L∕2

∫
x=0

vL(x)dx = � ⋅Ψ(�, �) (28)

The non-dimensional capacity of shear connection assumes the values (Equation 29):132

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�∗(� > 0, � →∞)→∞

�∗(� = 0) =
(

2�−1
2�

)

⋅ �

�∗(� = 0, � →∞) = �
�∗(� ≥ 0, � = 1) = 1

2
⋅ �

�∗(� = 0, � = 2) = 3
4
⋅ �

(29)

In the case � = 0 with � → ∞, the notion of non-dimensional capacity of shear connection is coincident with the degree of133

shear connection. This reflects the case of rigid-plastic behavior of the shear connection with infinite ductility.134

The maximum concrete compression force transferable by the shear connectionNc,max is (Equation 30):135

Nc,max(�, �, �) =

{

Ncf �∗ ≥ 1
�∗(�, �, �)Ncf �∗ < 1

(30)

The resistant bending moment of the composite elementMR is (Equation 31):136

MR(�, �, �) = f (Nc,max(�, �, �)∕Ncf ) ⋅Mpl,f ,R (31)
Here the function f (Nc∕Ncf ) ⋅Mpl,f ,R represents the PSD.137

3.2 Model formulation without slip limitation138

The condition of no slip limitation is assumed. It is considered that the ultimate slip �u tends to infinite as well as the ductility139

�. Namely (Equation 32):140

� →∞ �u = � ⋅ �y →∞ (32)
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3.2.1 Case �∕r ≥ 2141

The applied force on the concrete part at mid-span isNc = r⋅Ncf . Here,Ncf can be expressed using Equation 15. The maximum142

applied force is Nc ≤ vL,y ⋅ L∕4 ≤ Ncf . The shear connection is in the elastic phase � < �y (or equivalently � > 1). The143

equilibrium condition is described by Equation 33 starting from Equations 18, 19 and 24:144

1
2
vL,y
�y

⋅ �slip ⋅ (L∕2)2 =
r
�
⋅ vL,y ⋅

L
2

(33)
The equation can be written in non-dimensional terms (Equation 34). This is done by dividing the left-hand side and the right-145

hand side by vL,y ⋅ L∕2. The particular value of � satisfying the equilibrium condition (Equation 33) can be derived inverting146

the relation.147

1
2�

= r
�

→ � =
�
2r

(34)
From Equations 21, 23 and 25 follows:148

�slip = 4r ⋅
�y
�L

→ �max = �slip ⋅ L∕2 → � =
vL(�max)
vL,y

= 2 ⋅ r
�

(35)
Since the shear connection is not in the plastic phase, the solution is not dependent from the parameter of hardening �.149

3.2.2 Case 1 ≤ �∕r < 2150

The applied force on the concrete part at mid-span is Nc = r ⋅Ncf . Here, Ncf can again be expressed using Equation 15. The151

maximum applied force is vL,y ⋅ L∕4 < Nc ≤ vL,y ⋅ L∕2. The shear connection yields � > �y (or equivalently � < 1). The152

equilibrium condition is described by Equation36 starting from Equations 18, 19 and 24:153

1
2
�y
�slip

⋅ vL,y + vL,y ⋅

(

L
2
−

�y
�slip

)

+ � ⋅ vL,y

(

�y
�slip

− L
2

)

+ � ⋅
vL,y
2�y

⋅ �slip ⋅
⎛

⎜

⎜

⎝

(L
2

)2
−

(

�y
�slip

)2
⎞

⎟

⎟

⎠

= r
�
⋅ vL,y ⋅

L
2

(36)

The equation can be written in non-dimensional terms (Equation 37). This is done by dividing the left-hand side and the right-154

hand side by vL,y ⋅ L∕2.155

1
2�
+ (1 − � ) + �(� − 1) +

�
2�
(1 − �2) = r

�
(37)

The equation expresses the equilibrium condition. The parameter � has to satisfy Equation 37. It is assumed � ≠ 0. It can be156

rewritten in the canonical form a�2 + b� + c = 0. This represents a second order equation in the parameter � (Equation 37),157

which roots are:158

�1,2 =
−b ±

√

b2 − 4ac
2a

a = 1
2
(� − 1) b = 1 − � − r∕� c = �∕2 (38)

The solution of interest is described by Equation 39.159

� (�, �, r) =
1 + ��∕r − �∕r −

√

−��2∕r2 + 2��∕r + �2∕r2 − 2�∕r + 1
�∕r(� − 1)

(39)
From Equations 21, 23 and 25 follows:160

�slip(�, �, r) =
2

� (�, �, r)
⋅
�y
L

→ �max(�, �, r) = �slip(�, �, r) ⋅ L∕2 → �(�, �, r) =
vL(�max(�, �, r))

vL,y
(40)

3.2.3 Case �∕r < 1161

The parameter � is assumed strictly positive � > 0. It is possible to find an equilibrium configuration (i.e. a solution of � )162

that still satisfies Equation 36. The applied force on the concrete part at mid-span is Nc = r ⋅Ncf and can be expressed using163

Equation 15. The same conclusions of the case 1 ≤ � < 2 are made. The only difference is in the fact that � is strictly positive.164

The considered case is ideal. A bi-linear model of the shear connection is assumed with a positive hardening � > 0. No slip165

limitation is assumed. Assuming this ideal law with indefinite limit of the plastic branch, a solution exists to the equilibrium166

equation assumingNc ≤ Ncf as boundary condition.167
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3.2.4 Limit cases168

Case � = 0169

If � = 0 is assumed, Equation 39 becomes Equation 41.170

� =
1 − �∕r −

√

�2∕r2 − 2�∕r + 1
−�∕r

=
|1 − �∕r| − (1 − �∕r)

�∕r
=

{ 2(�∕r−1)
�∕r

�∕r > 1

0 �∕r ≤ 1
(41)

The second case of Equation 41 is in contrast with the assumption of � ≠ 0. The solution is not accepted. This result reflects171

the fact that for � = 0, is not possible to find an equilibrium configuration in case �∕r ≤ 1. The limit of the value of the integral172

of the shear flow on the beam tends to vL,y ⋅ L∕2.173

Limit � → 0174

In the limit � → 0, the root � tends to the values presented in Equation 41. Consequently, the parameters � and �max can be175

demonstrated to tend to those of Equation 42.176

�(� → 0, �∕r) = lim
�→0

(

1 + �( 1
� (�, �∕r)

− 1)
)

=

{

1 �∕r > 1
2−�∕r
�∕r

�∕r ≤ 1
(42)

(

�max
�y

)

(� → 0, �∕r) = lim
�→0

(

1
�

)

=

{ �∕r
2�∕r−2

�∕r > 1

solution does not exist �∕r ≤ 1
(43)

Limit � → 1177

In the limit � → 1, the root � tends to the value �∕r∕2. This can be demonstrated analytically using the De L’Hopital theorem178

of calculus. Consequently, the parameters � and �max can be demonstrated to tend to those of Equation 44.179

�(� → 1, �∕r) = lim
�→1

(

1 + �( 1
� (�, �∕r)

− 1)
)

= 2r
�

(44)
(

�max
�y

)

(� → 1, �∕r) = lim
�→1

(

1
�

)

= 2r
�

(45)

3.3 Model formulation including slip limitation180

The slip limitation is reintroduced (Equation 46). The ductility � is considered to be finite.181

� <<∞ �u = � ⋅ �y <<∞ (46)
The end-slip �max is limited to the value �u. The condition defines a limitation to the value of � . By introducing Equations 21182

and 46:183

�max
�y

=
�slipL∕2
�y

= 1∕� ≤ � =
�u
�y

(47)

This imposes a lower bound to the value of � . From this condition, Equation 53 holds:184

� ≥ � ′′ = 1∕� (48)
The criteria to define � that includes the slip limitation (Equation 46) is the one of Equation 49:185

� (�, �∕r, �) = max (� ′(�, �, r), � ′′(�)) (49)
Here the parameter � ′ is the one from Equation 39 and the parameter � ′′ comes from Equation 53. The two different cases can186

be identified:187

{

� = � ′ or � ′ > � ′′ Failure of the composite section
� = � ′′ or � ′ < � ′′ Failure of the shear connection (50)
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Figure 8 Resulting graph for the end-slip as function of the ratio �∕r for different values of the parameter �.

The end-slip and the over strength of the shear flow at support are calculated from Equations 23, 21 and 53.188

(

�max
�y

)

(�, �, r, �) =

{ 1
� (�,�,r,�)

0 ≤ �∕r < 2

2r∕� �∕r ≥ 2
(51)

�(�, �, r, �) =

{

1 + �
(

1
� (�,�,r,�)

− 1
)

0 ≤ �∕r < 2

2r∕� �∕r ≥ 2
(52)

The non-dimensional capacity of shear connection �∗ is calculated according to Equation 28.189

In figure 10 the different graphs as function of the parameters �, �, r, are illustrated for a particular value of ductility �.190

3.3.1 Limit cases191

Case � = 1192

In case of � = 1 (�u = �y), the shear connection has no redistribution capacity. In figure 11 the different graphs for this case are193

described. The overstrength factor � can assume a maximum value of � = 1. The maximum transmissible force Nc,max of the194

shear connection isNc,max = vL,yL∕4. The end-slip �max is limited to �y. The load capacity of the composite element is limited195

by the limited capacity of the shear connection already for � ≤ 2.196

Case � → ∞197

In case of � → ∞, the shear connection has large redistribution capacity. In figure 12 the different graphs for this case are198

described. In the case � = 0 the maximum overstrength factor � assumes value � = 1. This case coincides with a rigid-plastic199

shear connection with infinite redistribution capacity. In this case the notion of the parameter �∗ coincides with the notion of200
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Figure 9 Resulting graph for the over-strength � as function of the ratio �∕r for different values of the parameter �.

degree of shear connection. The ratio between the two is unitary. The rigid plastic case with no limitation has two different201

interpretations. The first is �u being reasonable and �y being much smaller �y << �u. The second interpretation is �y having202

reasonable values with �u significantly larger �u >> �y. The two cases are in the presentmodel equivalent. The decisive parameter203

is in fact the ductility �. For � → 0 but with strictly positive values � > 0, the value ofΨ of the shear connection tends to infinite.204

This means that an equilibrium solution can be found that balances the forceNcf . This is valid as well for values �∕r < 1.205

3.4 Model summary206

In figure 13 the analytical scheme is summarized. The analytical formulation of the various parameters are presented below.207
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Figure 10 Resulting graphs for variable values of � for a specified value of ductility � = 4. Note that as function f of the PSD
a specific function is proposed, thus consisting in an example. Therefore theMpl,Rd vs � graph can not be applied generally but
specifically relates to the composite section studied and the related PSD function.
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Figure 11 Resulting graphs for variable values of � for the case of fragile (no ductility) shear connection, with � = 1. Note that
as function f of the PSD a specific function is proposed, thus consisting in an example. Therefore theMpl,Rd vs � graph can not
be applied generally but specifically relates to the composite section studied and the related PSD function.
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Figure 12 Resulting graphs for variable values of � for the case of infinite redistribution capacity of the shear connection, with
� →∞. Note that as function f of the PSD a specific function is proposed, thus consisting in an example. Therefore theMpl,Rd
vs � graph can not be applied generally but specifically relates to the composite section studied and the related PSD function.
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ANALYTICAL MODEL SUMMARY

• Check hypothesis:
– uniform shear connection (uniformly spaced, equal shear connectors and constant number of rows);
– simply supported composite element;
– uniformly distributed load;

• Input parameters:
– element geometry: span-length L;
– shear-connection: yield shear flow vL,y, yield slip �y, plastic hardening ratio �, ductility �;
– composite section: concrete compression force at ULS, FSI Ncf , Partial Shear Diagram (PSD) Mpl,R = Mpl,f ,R ⋅
f (Nc∕Ncf );

– composite element: degree of shear connection � = (vL,y ⋅ L)∕(2Ncf ).
– load ratio: load ratio r = Nc∕Ncf expressed with reference to the concrete compression force at mid-span under the
specified load levelNc .

• Calculation of the non-dimensional parameters Ψ and �∗:
Ψ(�, �) =

�(�2 − 2� + 1) + 2� − 1
2�

�∗(�, �, �) = � ⋅Ψ(�, �)

• Calculation of the non-dimensional elastic length
� (�, �∕r, �) = max (� ′(�, �, r), � ′′(�))

� ′(�, �, r) =
1 + ��∕r − �∕r −

√

−��2∕r2 + 2��∕r + �2∕r2 − 2�∕r + 1
�∕r(� − 1)

� ′′ = 1∕�

• Calculation of the end-slip �max and overstrength factor �.
(

�max
�y

)

(�, �, r, �) =

{ 1
� (�,�,r,�)

0 ≤ �∕r < 2

2r∕� �∕r ≥ 2

�(�, �, r, �) =

{

1 + �
(

1
� (�,�,r,�)

− 1
)

0 ≤ �∕r < 2

2r∕� �∕r ≥ 2

• Maximum transferable force by the shear connection and resistant bending moment on the basis of the Partial Shear
Diagram (PSD)

Nc,max(�, �, �) =

{

Ncf �∗ ≥ 1
�∗(�, �, �)Ncf �∗ < 1

MR(�, �, �) = f (Nc,max(�, �, �)∕Ncf ) ⋅Mpl,f ,R
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OUTPUT

Figure 13 Analytical model summary scheme

4 COMPARISONWITH NUMERICAL PARAMETRIC ANALYSIS208

A numerical 1D method is used to carry out a parametric analysis. The numerical method consists in a finite differences method.209

The method is explicit and implements the numerical resolution of the problem described in figure 3. It is based on a one-210

dimensional finite differences method including the shear connection and cross-section non-linearity. It is solving the coupled211

differential equations (Equations 2, 1) governing the behavior of the composite beam. The numerical method implements a212

shooting technique. It transforms aBoundaryValue Problem (BVP) into an Initial Value Problem (IVP). This consists in changing213

a first boundary condition in order to respect a second one on the other boundary. The Partial Shear Surface (Equation 8) is214

numerically derived with a Strain Limited (SL) analysis. This is used as model for the composite section. The shear connection215

is modelled as Equation 17. No ductility limit � is put on the slip. Convergence of the iterative method is reached when the216

the boundary conditions (BCs) are satisfied. The first boundary condition is �(0) = 0 (absent slip at mid-span). The second217

boundary condition isNc(L∕2) = 0 (absent concrete compression force at support). These BCs are numerically checked within218

a small tolerance.219

The varied parameters are:220

L = (10) m
� = (2, 1.8, 1.6, 1.4, 1.2, 1.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)
� = (0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1)
�y = (1, 2) mm
M(L∕2) = (0.99, 0.9, 0.7, 0.5, 0.3, 0.1) ⋅Mpl,f ,Rd

(53)

By imposing the mid-span bending momentM(L∕2) the bending moment diagram is known. The loading ratio r is calculated221

when convergence of the numerical method is reached. In figures 14 and 15 the comparison between the analytical method and222

the observed numerical results are shown.223
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Figure 14 Over-strenght of shear-flow parameter �: comparison of the analytical model predictions (continuous lines) with the
numerical results (scatter plot).

5 DISCUSSION224

The proposed analytical model is based on a series of assumptions. These are described in Section . It is mainly limited to225

simply supported composite beams under uniformly distributed load and evenly spaced shear connectors. A simple bi-linear226

behavior is used as model for the shear connection. The model synthesizes a series of formulations which aim to predict the227

mechanical behavior of the composite beam under the given assumptions. The basic governing parameters are the degree of228

shear connection �, the loading ratio r, the shear connection hardening � and ductility �. From these a prediction of the end-slip229

�max∕�y can be derived.Moreover using the parametersΨ and � ∗ it is demonstrates how themodel converges under notable limit230

cases to correct predictions in the calculation of the partial shear diagram and of hence the member resistance. The comparison231

between the analytical method predictions and the numerical analysis, delivers a good outcome. Both the end-slip �max and the232

over-strength factor � present an overestimation. The analytical model well describes however the trends of the distributions.233

And the influence of the non-dimensional parameters clearly emerges in the parametric numerical analysis. Some of the main234

consequences of the model are:235

• the composite beam can be described in non-dimensional terms. This based on the key parameters � (degree of shear236

connection), r (load ratio as defined by Equation 18). In the analytical model these two parameters play a symmetric role.237
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Figure 15 End-slip �max: comparison of the analytical model predictions (continuous lines) with the numerical results (scatter
plot).

The inverse of the load ratio r plays in fact the same role as the degree of shear connection �. The ratio between the238

end-slip �max and the yield slip �y can be described as function of these non-dimensional terms. The same holds for the239

over-strength factor alpℎa. It appears that the non-dimensional parameters identified are correctly reducing the the key240

parameters to the minimum ones. This reflects good in the comparison in the graphs with non-dimensional axes.241

• using the plastic hardening parameter �, the analytical model shows how the system shifts from an elastic-perfectly plastic242

behavior to a perfectly elastic behavior.243

• if in the elastic-perfectly plastic (no hardening) case the ductility � is set as sufficiently high, the model correctly con-244

verges to the conventional model of rigid-plastic shear connection. Hence, delivering the same results as the conventional245

calculations of the composite beam in terms of resistance.246

• the Partial Shear Diagram appears in the analytical model as a consequence of the limitation of the slip � in the limit case247

of no plastic hardening � = 0. The analytical model is first elaborated in absence of a slip-limitation in terms of ductility �.248

From this, two key-diagrams have been derived. In absence of a slip limitation the model fails to describe the mechanical249

behavior for the case of � = 0 (no plastic hardening of the shear connection) and �∕r < 1. This is because the solution to250

the equilibrium equation 36 does not exist. When a slip limitation � is introduced for the shear connection, the model well251
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predicts the existence of the Partial Shear Diagram of composite beams. The necessity for the slip to respect the failure252

criteria � ≤ ��y, imposes a limitation to the beam load capacity. This explains and reproduces the Partial Shear Diagram.253

• For � → 0 and large but finite values of �, the model outcomes converge to the conventional rigid-plastic description of254

the shear connection. This leads the parameter �∗ being coincident with the notion of Degree of Shear Connection �. This255

limit case leads also to the coincidence of the functionMR(�) with the notion of Partial Shear Diagram.256

• from the comparison between numerical and the analytical predictions that emerges from figure 15, the formula related257

to the limit � → 0, appears to be a reasonable upper limit estimation of the end-slip, thus slip demand on the shear258

connection. If judged reliable, the formula can be used to calibrate reasonable design rules to impose a sufficient ductility259

or conversely a minimum degree of shear connection for a specific type of shear connection mean.260

• the ductility � together with the yield slip �y (or alternatively the plastic slip capacity �u) appear to be key parameters.261

This evidences a potential lack of the current EC41 which only imposes a minimum value of the plastic slip capacity �u262

to define the shear connectors as ductile. The future version of EC4 at the present version introduces a more complete263

description of the shear connection in this sense. Probably trying to address this specific problem.264

• from comparisons emerging from figure 14 and figure 15, the analytical formulations appear to correctly catch more265

than the values, the global trends, with the slope and the asymptotic distributions of the trends presenting a substantial266

agreement.267

• two beams of different span-lengths L with same value of Degree of Shear Connection � and same �y, vLy, � and �, have268

the same mechanical behavior. These have according to the proposed model, same bending resistance and will exhibit269

same end-slip. This can be identified as an equivalence principle between composite beams. These two beams would have270

the same shear connection behavior and would deliver the same slip demand on the shear connection. This would hence271

not justify a more severe minimum degree of shear connection for the longer beam.272

• the analytical simplified model especially demonstrates how one of the key-driving parameter to quantify the end-slip273

�max is not the ultimate slip �u. In contrary the end-slip can be quantified as a multiple of the value �y with this multiple274

being a function of the non-dimensional parameters �, �, r. The same reasoning holds for the over-strength of the shear275

flow in the support region. This can be described as a multiple of the value vL,y, with the parameter � being this multiple.276

• the over-strength factor � is also one of the outcomes of the model. The formulas describe the influence of the different277

parameters on the longitudinal shear in the support region. This can in the future help understanding the effect of plastic278

hardening of connectors for the longitudinal shear verification in the support region.279

The method is not suitable for predicting the load-slip behavior for load distributions different from uniformly distributed. The280

extension of it to other load distributions can however be evaluated in future works. It is supposed here that the method can be281

generalized to a generic behavior of the shear connection P (�). In synthesizing the numerical method, a bi-linear mechanical282

model was used. A second order equation was emerging from the equilibrium equation and this was allowing to analytically283

find the roots as � . The process can be extended to a generic reasonable function P (�). This function can for example be derived284

from real push out-test. In such case, a numerical method is more suitable to find the roots of � . Similar extension can be done285

with the parameter Ψ as defined by the integral in equation 26 and subsequent derivation of �∗. The assumption that the method286

is extendable to a generic P (�) needs however still to be verified. Numerical and possible tests have to be done in the future to287

ascertain the reliability of the method. The assertion is aimed mostly as input for further research works.288

6 CONCLUSIONS289

An analytical model representing the behavior of a simply supported composite beam under uniformly distributed load has290

been synthesized. A uniform shear connection is considered on the longitudinal axis. A bi-linear elastic with plastic hardening291

behavior is used and the ductility is also included. The model formulation is summarized in Section 3.4. It is built on the292

simplification assumption of constant strain slip (�slip = const.). Despite the limitations and the simplification assumptions, the293

model is coherent and consistent. Interestingly it shows how it connects in specific limit cases to the rigid-perfectly plastic or294

perfectly elastic hypothesis. Themodel predictions are comparedwith numerically derived results. Qualitatively the global trends295
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are well predicted by the analytical model. If judged reliable, the model can further improve the understanding the behavior of296

composite steel-concrete beams. Further research is needed to judge weather the model is delivering reliable results. It tries to297

describe the composite member in non-dimensional terms, reducing the number of degrees of freedom describing the problem to298

the minimum. It can be potentially used to predict the beam end-slip, thus helping calibrating design rules for a minimum degree299

of shear connection to prescribe in the codes. Equivalently it can help to judge specific connection means present sufficient300

ductility based on their first yield point. The influence of the hardening factor on the overs-strength of longitudinal shear at the301

support is also modeled. The related formula can help calibrating reliable design rules to perform the longitudinal shear check302

in the support region. This is currently object of study for the implementations of future generation of EC4.303
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Nomenclature319

(1∕r)u ultimate curvature320

1∕r curvature321

� shear-flow over-strength at support322

� hardening factor323

� slip324

�y yield slip325

�slip slip strain326

� degree of shear connection327

�∗ non-dimensional capacity of shear connection328

� ductility329
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� rotation330

Ψ non-dimensional integral of the shear flow-slip model331

ex shear connectors spacing332

f Partial Shear Diagram normalized function333

L span length334

M bending moment335

Mpl,f ,R resistant plastic bending moment in full shear connection336

MR resistant bending moment of the composite element337

n number of shear connectors338

Nc resultant of compression force on the concrete part of the section339

nf number of shear connectors for Full Shear Connection340

Nc,max maximum concrete compression force transferable by the shear connection341

Ncf resultant of compression force on the concrete part of the section at ULS in Full Shear Interaction conditions342

P bearing force in the single shear connector row343

Py yield bearing force in the single shear connector row344

q uniform load345

r loading ratio346

vL longitudinal shear-flow347

vL,y yield longitudinal shear flow348

w deflection349

x Coordinate of section from mid-span350

xy yield point coordinate of section from mid-span351
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