H Py =CINTER”

HORMIGON
y ACERO

Disponible en www.hormigonyacero.com
Hormigon y Acero, 2025
https://doi.org/10.33586/hya.2025.3160

ARTICULO EN AVANCE ON LINE

An Analytical Model of Simply Supported Steel-Concrete Composite Beam With Bi-Linear
Behavior of the Shear Connection Including Ductility: Formulation and Comparison With
Numerical Results

Francesco Profico & Zanon Riccardo

DOI: https://doi.org/10.33586/hya.2025.3160
Para ser publicado en: Hormigon y Acero

Por favor, el presente articulo debe ser citado asi:

Profico, F., Riccardo, Z. (2025) An Analytical Model of Simply Supported Steel-Concrete
Composite Beam With Bi-Linear Behavior of the Shear Connection Including Ductility:
Formulation and Comparison With Numerical Results, Hormigén y acero,
https://doi.org/10.33586/hya.2025.3160

Este es un archivo PDF de un articulo que ha sido objeto de mejoras propuestas por dos
revisores después de la aceptacién, como la adicién de esta pagina de portada y metadatos, y
el formato para su legibilidad, pero todavia no es la version definitiva del articulo. Esta versién
serd sometida a un trabajo editorial adicional, y una revisién mas antes de ser publicado en su
formato final, pero presentamos esta version para adelantar su disponibilidad.

En el proceso editorial y de produccién posterior pueden producirse pequefias modificaciones
en su contenido.

© 2025 Publicado por CINTER Divulgacion Técnica para la Asociacion Espafiola de Ingenieria
Estructural, ACHE


http://www.hormigonyacero.com/
https://doi.org/10.33586/hya.2025.3160

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

An Analytical Model of Simply Supported Steel-Concrete
Composite Beam With Bi-Linear Behavior of the Shear
Connection Including Ductility: Formulation and Comparison
With Numerical Results
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ISteligence Engineering, ArcelorMittal,

Luxembourg Abstract
Correspondence An analytical model of simply-supported composite beams is described. A bi-linear
*Francesco Profico, 66, Rue Du law of the shear flow-slip behavior of the shear connection is considered. The influ-

Luxembourg, Esch-Sur-Alzette -

. ence of the plastic hardening and ductility of the shear connection are included in the
Luxembourg. Email:

francesco.profico @arcelormittal.com model. A formula to predict the end-slip of a generic simply-supported composite
beam is derived. The model includes the cases of partial and full shear connection and

Present Address

66, Rue Du Luxembourg, Esch-Sur-Alzette - of elastic and plastic design of the shear connection. The analytical model predictions

Luxembourg are compared and checked against the results of a one-dimensional numerical model

of composite beam including non-linearity. The comparison reveals a substantial
agreement between the novel analytical formulas and the numerical model.
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1 | INTRODUCTION

Composite steel-concrete beams are in the European framework designed according to Eurocode 4'' (EC4). These can be used
both for buildings and bridges. The design of the shear connection can be in general elastic or plastic2. While in the case of
composite bridges design only a slight plastic redistribution is admitted, in the case of buildings EC4 opens to a plastic design
of the shear connection. The design of elements in partial shear connection is highly affected by the resistance of the shear
connection itself?. The reduction of bending resistance of the section must be considered with the use of the Partial Shear
Diagram. The slip demand on the shear connection is higher as the shear connection yields approaching the member ultimate
load. In the case of plastic design ductile shear connectors must be used. EC4 defines ductile shear connectors as the ones
reaching a minimum plastic slip of 6 mm. Typically headed stud shear connectors are used as shear connectors as the ductility
requirement imposed by EC4 is satisfied and specific design rules are provided already by the codes. The design of composite
beams can be done both in full and partial shear connection. The degree of shear connection # is a key parameter to predict
the composite beam behaviour. EC4 imposes limitations to the use of partial shear connection in buildings. A minimum degree
of shear connection is imposed by EC4. These limitations are strictly calibrated for the value of 6 mm of slip capacity. The
minimum degree of shear connection mainly depends on section symmetry, the steel yield resistance and the composite beam
member length. These limitations are more severe for longer elements. The limitations are more strict for more asymmetric
beams and higher steel grades. The limit exists mainly because in a low degree of shear connection a higher plastic deformation
capacity is required to the shear connection. If a simply supported beam is considered, the highest plastic slip capacity is required




25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

2 | PROFICO FRANCESCO ET AL

at the end of the beam. The beam end-slip is generally observed to sharply increase as the ultimate bearing capacity of the beam
is approached. The slip demand becomes more severe for lower degree of shear connection. In order to guarantee a consistent
structural design of the composite beam, EC4 introduces limitations in terms of minimum degree of shear connection. This to
prevent that, for low degree of shear connection the slip demand on the shear connection is higher compared with the plastic
slip capacity minimum threshold of 6 mm. Some observations in numerical analysis were done in* with the purpose to propose
a slip-capacity dependent formulation, taking into account the effect of highly asymmetric steel part sections.

The plastic calculation is done assuming a rigid-plastic behavior of the shear connection. This leads to the introduction of the
concept of degree of shear connection. The consistency of this assumption heavily relies on the fact that typical shear connection
means as head-studs show a high ductility with low hardening ratio. Hence, the hypothetical rigid-plastic behavior is effectively
well representing this behavior. From a rigid-plastic behavior is however not possible to derive an estimation of the slip demand.
Analytically derived formulations to predict this are at the current state missing. The influence of parameters like the first
yield slip, the ductility of the shear connection and the hardening ratio in the plastic branch are at the current state missing. A
model providing analytical formulations and correctly linking the limit cases of perfectly elastic connection and rigid-plastic
connection is at the current state not existing. This would be of extreme interest especially in the frame of the elaboration of
the forthcoming next generation version of EC4. This in fact will generalize the design, facilitating the calculation process for
different connection means compared to head-studs and trying to correctly include the effect of mechanical behaviors highly
different from rigid-plastic ones.

Analytical methods describing the mechanical behaviour of a composite beam exist already®. In the present article a specific
one is presented which main aim is to describe the influence of key parameters as the shear connection ductility, ultimate slip
and the plastic hardening. This is done considering the effect of the load ratio and the degree of shear connection. The results
predicted by the derived formulations are compared with the respective ones obtained from a one-dimensional finite-difference
method of a composite beam implementing both the shear connection non-linearity and the cross-section non-linearity. For this
implementation reference to® is made.

2 | REVIEW OF COMPOSITE BEAMS MECHANICS

Composite steel-concrete beams are structural elements composted by a concrete and a steel part. These are connected by means
of a shear connection. The shear connection transfers longitudinal shear. It allows for reaching the composite action of the two
parts.

The mechanical behavior of the shear connection strongly affects the mechanical behavior of the composite element. Concrete
and steel materials can exhibit non-linear behavior. The shear connection can show non-linear behavior as well.

2.1 | Kinematic compatibility and equilibrium equations of shear connection

For equilibrium on the concrete part, a variation in the concrete compression force N, is balanced by the presence of a
longitudinal shear vy . In Equation|[T|the equilibrium is expressed in differential and integral form.

X

=-v,(x) < N/(x)= Nc(xo)—/vL(x’) dx’ (1)

X0

dN,.(x)
dx

Note that a distinction between x and x’ is used only for mathematical formality, distinguishing the function variable from the
integration variable respectively.

For kinematic compatibility the derivative of slip 6 is related with the slip strain e
[2)in differential and integral form.

siip- Lhe relation is described by Equation

X

= eqip(x) < 8(x) =6(xo) + / eyip(x') dx' 2

X

dé(x)
dx
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PROFICO FRANCESCO ET AL 3

2.2 | Connection shear flow-slip behaviour

The shear connection is generally composed by shear connectors. These can be arranged in more than one line and present non-
uniform spacing. In the present article a constant number of lines is assumed along the beam. Moreover, a uniform spacing e,
of connectors is assumed.

The number of rows of shear connectors present between the mid-span and the support section is calculated according to
Equation 3}

L/2
netf 3)
ex
Shear connectors have in general a non-linear shear force-slip behavior P — 6 (Equation [)).
P(6) Shear force-slip behavior of connector (@]

A shear flow-slip behaviour of the shear connection is defined by dividing the shear force-slip law of the uniformly spaced lines
of connectors by the spacing e,, properly considering the number of connectors present in a line (Equation [5).

P(5)

v;(6) = Shear flow-slip behavior of shear connection (®)]

X

If the yield force of the shear connector is denoted as P,, a yield shear flow can be defined as Equation @

P, ]
Uy, =— Yield shear flow ©6)

2.3 | Composite section behaviour

The characterisation of the composite section mechanical behaviour can be done via a Strain Limited (SL) analysis. The research®
is used as reference. A linear distribution of strains is assumed on the two parts of the section. The deformation state is described
by the strain slip €;;,, the curvature (1/r) and by specifying an additional strain ¢, for one fibre of the section. The stress
distributions are consequence of o — € laws associated to the materials. The resultants of the bending moment M and axial force
N are derived by integrating the stress distributions over the section under a defined deformation state. The number of free
parameters reduces to two by imposing the condition of pure bending N = 0. The composite section behaviour is described by
a surface (Equation m) This surface is named Partial Shear Surface (PSS). Both the concrete compression N, and the moment

resultant on the section can be expressed as function of the kinematic variables slip strain €,;;, and curvature (1/r).
M ey, (1/1) = M(€y;,(x), (1/r)(x))
N (egip, (1/1)) = N(eg,(), (1/r)(x))

If the surface has monotonic behavior, the relation can be inverted. The slip strain e
by Equation g).

slip

@)

s1ip and the curvature (1/r) can be described

eslip(M’ Nc) = €slip(M(x)v Nc(x)) (8)
(1/NM,N,) = (1/r)(M(x), N.(x))
In conditions of Full Shear Interaction (FSI) the slip strain €,

on the slip strain €, The associated ultimate curvature is (1/r),(e
quantities of Equation[9]can be defined.

is zero. The Ultimate Limit State of the section is dependent

siip)- At Ultimate Limit State (ULS) in FSI conditions the

MPI,f = M(eslip =0, (l/r)u) (9)
N.s = N.s(eg;, =0,(1/r),) (10
The Partial Shear Diagram (PSD) is composed by the set of points M (€;,), N (€g;,) in the M — N, plane. These points are

ULS points derived with ultimate curvature (1/r),. This is a function of the strain slip €
of the parameter €,;;, Equation|TT}

s1ip- Lhese points are derived as function

{M(es,,,» = M((€yips (1/P)(4) o

Nc(eslip) = Nc((eslip’ (l/r)u(eslip)))
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x%—\/_\‘ 3(x) NS P —" w(x)
+

Figure 1 static scheme of the simply supported composite beam with reference system. Below a qualitative example of the
relevant distributions is shown.

2.4 | Degree of shear connection

The composite section experiences a force on the concrete part N, (x = L/2) at mid-span. In the support region no external force
is applied on the concrete part. The boundary condition N, (x = L/2) = 0 should be satisfied. For equilibrium reasons the shear
connection transfers a force of N, between the mid-span section and the support section. The mean shear flow is N,/(L/2).
The degree of shear connection is defined as Equation [T2}

12)

In Full Shear Connection cases (FSC) the connection is sufficiently resistant to transfer the force N, ,. Namely (Equations E]

and[T4):

N >1 FULLS SHEAR CONNECTION (FSC) (13)
In the opposite case the shear connection is not sufficiently resistant to transfer the force:
n- P,
N,

n= <1 PARTIAL SHEAR CONNECTION (PSC) (14)

By substituting Equation [6]and Equation [3|in Equation[I2] the relation of Equation [I3]is derived:
N 1 —L OLy
n 2

of = (15)

3 | ANALYTICAL MODEL FORMULATION

3.1 | Assumptions

The model is based on the following assumptions:
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Equilibrium on concrete part Kinematic compatibility at interface

dx #

)
#

~

Concrete

-
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e
vi(X)

Steel

Composite section behavior

&
§ kY b
[
1/r -) 5 3

& {0}
Strains Stress Resultants gt -

Shear connection behavior

Figure 2 basic principles governing the mechanical behavior of the composite beam

Equilibrium Equilibrium
-dNc/dx=v,
> D e — >
q(x) M(x) ~_ C Ne(x) vi(x)
Sl -~ Shear
Partial Shear Surface connection
M(E o (1/[')) I Kinematic behavior
o P ~o compatibility v.(3)
S dé/dxzes‘ip
D e — >
(1/r)(x) Eip(X) 5(x)
Kinematic
compatibility
de/dx=(1/r)
e
Kinematic
compatibility i
-dw/dx=¢@
w(x)

Figure 3 schematic representation of the theory governing the mechanical behavior of the simply supported composite element.
The coupling of the different distribution is described

e A simply supported element of span-length L is considered with degree of shear connection #. The composite section of
the element is constant. In Full Shear Interaction at ULS the resultant compression force on the concrete partis N, .

e A constant slip strain along the beam is assumed. Namely (Equation [T6):
€51ip(X) = Emp = const. (16)
This constitutes a strong simplification hypothesis.

e The shear connection behaviour is described by a bi-linear model. In correspondence of the slip 4, the yield point is
reached and the shear flow is v, ,,. The hardening factor f is the ratio between the post-yield stiffness and the first elastic
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Figure 4 relevant parameters used as reference, static scheme and reference system used in the elaboration of the analytical

model

Ne
4 Concrete
N compression
R force
Ne(x)

av,
L
d v,

N ‘ Shear flow

| W

Figure 5 simplification hypothesis of constant strain slip €
model of the shear connection is used.

slip

6”\5)(
+
N Slip
S d(X)
n £, =const
N sl Strain slip
D Eap(X)

VR
External load Moment 5 :_ —: :_ Equilibrium _:
a(x) M P T T W | -dNofdx=y, I
I I I . “v(x) I
I | i i | | |
Curv\;ture ) }Q | PN | | CO:::CatIIOn |
(1/tI(X) :_ Eqip(X) 3(x) Jl : Kinematic i behavior :
r e compatibility v(3) |
RoIe;IIon : dé/dx:ashp |
(x) >
(p/x | Es”p(X) 6(X) |
J | |
Deflection | |
w(x) | T |
| |
: Hypothesis :
I Eip=Esii p=const I
.- - ____ _
Figure 6 observed ductility values for the given shape
107 branch stiffness. The law is described by Equation[T7}
UL.y
ra 1) 6<6,
UL(5) = Y Uy
gyt B =*-(6-96,) 620,

5,

and influence on the other distributions. A bi-linear mechanical

a7
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o/d

Figure 7 Bi-linear mechanical shear flow-slip model of the shear connection and related limit cases

o the parameter 6, defines a limit of slip for the shear connection. At this slip the shear connection reaches failure. The
ductility is defined as the ratio u = 6,/4,.

e at mid-span a concrete compression force N, is applied on the section. For equilibrium (Equation|[T), applying the proper
boundary conditions, the following condition should be satisfied (Equation [I8). A loading ratio r describes the loading
level. This is defined as the ratio between the applied force N, and the one corresponding to ULS in FSI conditions,
namely:

x=L/2
/ UL(x)dx=Nc=r-ch (18)

x=0

As consequence of the these hypothesis the slip varies linearly between the mid-span section and the support section (Equation
[9:
O(x) =€y, - x (19)

In case 6,,, > 6, the shear connection is yielded. In this case the coordinate where the coordinate x, where yield is reached,

closer to mid-span can be computed by equating 6, = 6(x), thus deriving x,, from Equation

x, =0,/€up 20)
The parameter ¢ is introduced as Equation 21} This parameter represents the non-dimensional elastic length.
6,/€y;
v/l ©slip
=20 21
¢ L/2 @h

In cases { > 1 the shear connection is in the elastic phase. In case { < 1, the shear connection is yielded. The end-slip §,,,, can
be computed as Equation [23):

5max = Eslip : L/2 (22)
From the mean-value theorem of calculus:
xX'=L/2 x'=L/2
Opaxe = 6(x =0) + / €q;p(X) dx" = 6(x =0) + €, / dx'=%€y,,-L/2 (23)
x'=0 x'=0

Note: a distinction between x and x’ is used only for mathematical formality, distinguishing the function variable from the
integration variable respectively. Therefore, the calculation of the end-slip §,,,, under hypotheses |16 and the integral coming

from a generic distribution €;;, from calculus, coincide. If the model is able to exactly estimate the mean strain slip €, the
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12s  model would deliver a correct estimation of the end-slip §
o varies along the coordinate as described by Equation 24}

max- As consequence of the two assumptions [I6]and 5] the shear flow

1

N

% "€yt X x <d,/€y,
0@ =o,66n=4" ", _ 24)
UL,y+ﬂ' e '(eslip'x_éy) xzéy/eslip

127 The shear-flow over-strength at support is denoted as « and is hereby defined as Equation 25}
_ o= L/2) _ 0, (6(x = L/2)

= (25)
Uqu UL,y
12s  The non-dimensional integral of the shear flow-slip model is defined (Equation [26)).
=5, ,
-2 D+2u—1
W, p) = o (8 ds = PUe =21t D+ 20 (26)
Upy "6, 2u
5=0

120 The non-dimensional integral of the shear flow-slip model assumes the values (Equation [27):
Y(u=1p)=1/2
Yy = 00,=0)—1 (27)
Y(u - 0,f>0) > ©

130 The non-dimensional capacity of shear connection respect to the applied force is defined (Equation [28). This can be linked
131 to the non-dimensional integral of the shear flow-slip model and the degree of shear connection using Equations[T5]and [26]

x=L/2
. 1
B ) = - / v()dx =n-¥(u,p) (28)
i x=0
132 The non-dimensional capacity of shear connection assumes the values (Equation 29):

NP> 0. = 00) = 0
(e =0= (%)

2u
17 B=0,p—>c0)=1 (29)
TPz u=1)=;-
" (B=0u=2)=7"
133 In the case f = 0 with y — oo, the notion of non-dimensional capacity of shear connection is coincident with the degree of
132 shear connection. This reflects the case of rigid-plastic behavior of the shear connection with infinite ductility.
135 The maximum concrete compression force transferable by the shear connection N, is (Equation :
N, n*>1
Nepas By =3 ~ (30)
o (B, N, s <1
136 The resistant bending moment of the composite element My is (Equation 3T)):
Mg(B.n. 1) = f(Nepax(B 1 )/ Neyp) - My 1 g (€1Y)

1

w

» Here the function f(N./N.;) - M, ; p represents the PSD.

s 3.2 | Model formulation without slip limitation

139 The condition of no slip limitation is assumed. It is considered that the ultimate slip &, tends to infinite as well as the ductility
10 . Namely (Equation [32)):

U — oo 6,=H-6,> (32)
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3.2.1 | Casen/r>2

The applied force on the concrete part at mid-spanis N, = r- N, . Here, N, can be expressed using Equation@ The maximum
applied force is N, < vy, - L/4 < N,_,. The shear connection is in the elastic phase 6 < 4, (or equivalently { > 1). The

equilibrium condition is described by Equation [33]starting from Equations [T8] [[9]and 24}

L
J(L/22="L. L
(/) n UL,y 2

1 UL,y —

27, G 33
¥y

The equation can be written in non-dimensional terms (Equation [34). This is done by dividing the left-hand side and the right-

hand side by v; , - L/2. The particular value of ¢ satisfying the equilibrium condition (Equation can be derived inverting

the relation.

r
- == = 34
%=y T T G
From Equations 21} 23] and [25] follows:
6 Up(6pax) 27
e =d4r. - 5§ =¢.,. -LJ2 = L\max) _ 2T 35
eslzp r ”L - max €.Y]lp / - a UL,y n ( )

Since the shear connection is not in the plastic phase, the solution is not dependent from the parameter of hardening f.

322 | Casel <n/r<?2

The applied force on the concrete part at mid-span is N, = r - N_,. Here, N, can again be expressed using Equation E} The
maximum applied force is v; , - L/4 < N, < v, , - L/2. The shear connection yields § > &, (or equivalently ¢ < 1). The
equilibrium condition is described by Equation36]starting from Equations[T8] [[9)and 24}

2
19, L o, 5, L Ury — < L )2 5y r L
—_ . + . ——— |44 — = )4+ —=. e _ — J A, = —. R 36
2% UL,y UL,y < ) Esll.p ﬁ UL,y ES[ip ) ﬂ 25y €sltp 2 Eslip n UL,y 2 ( )

The equation can be written in non-dimensional terms (Equation [37). This is done by dividing the left-hand side and the right-
hand side by v , - L/2.

1 s 2 r
> TU=-O+pC-D+ A=) =- (37
2L 2¢ n
The equation expresses the equilibrium condition. The parameter ¢ has to satisfy Equation It is assumed ¢ # 0. It can be

rewritten in the canonical form a¢? + b{ + ¢ = 0. This represents a second order equation in the parameter ¢ (Equation ,

which roots are:
—b+ Vb2 —4ac 1
C1,2=T a=§(ﬁ—1) b=1-p-r/n c=p/2 (38)
The solution of interest is described by Equation 39}

L+ Bn/r—n/r—/=pn2[r* + 2Bn/r +n*/r2 = 2n/r + 1

s, 1) = 39
¢B.n.r) n/rp—1) (39)
From Equations 21} 23] and [25] follows:
5 9 b
Eslip(ﬁ’ﬂ’r)=ﬁ'zy - (Smax(ﬂ?rl’r)=Eslip(ﬂ7’77r)'L/2 - a(ﬂ’n’r)=w (40)
s s L,y

323 | Casen/r<1

The parameter f§ is assumed strictly positive f > 0. It is possible to find an equilibrium configuration (i.e. a solution of ¢{)
that still satisfies Equation@ The applied force on the concrete part at mid-span is N, = r - N, and can be expressed using
Equation T3] The same conclusions of the case 1 < # < 2 are made. The only difference is in the fact that § is strictly positive.
The considered case is ideal. A bi-linear model of the shear connection is assumed with a positive hardening § > 0. No slip
limitation is assumed. Assuming this ideal law with indefinite limit of the plastic branch, a solution exists to the equilibrium
equation assuming N, < N, as boundary condition.
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3.2.4 | Limit cases
Case =0
If p = 0 is assumed, Equation[39becomes Equation 41}

‘e L—n/r—\?Jr =2q/r+1 _ |1—n/r|—(1—n/r)_{M n/r>1

n/r 41
-n/r n/r 0 n/r<1 @b

The second case of Equation[#1]is in contrast with the assumption of ¢ # 0. The solution is not accepted. This result reflects
the fact that for # = 0, is not possible to find an equilibrium configuration in case #/r < 1. The limit of the value of the integral
of the shear flow on the beam tends to v , - L/2.

Limit § — 0
In the limit § — 0, the root ¢ tends to the values presented in Equation Consequently, the parameters « and §,,,, can be
demonstrated to tend to those of Equation 2]

0 =1li 1 -1 = : nfr>1 42
a(f - ,n/r)—ﬂlg(l)( +ﬁ(§(ﬁ ) )>— 2;_7r/, nfr <1 42)
5max . 1) L’; 7”]/7‘ >1
_ - 0, =1 — ) =< /r-2 43
< 5, > v /") s <C {solution does not exist n/r<1 @)

Limit § — 1
In the limit § — 1, the root ¢ tends to the value #/r/2. This can be demonstrated analytically using the De L’Hopital theorem
of calculus. Consequently, the parameters a and §,,,,, can be demonstrated to tend to those of Equation 44}

. 2r
a(f — 1,1 r)=11m<1+ﬁ( 1)) == (44)
/ =1 ¢(B.n/r) n
Opmax . 1 2r
—_— ->lLxy/r)=lim|( =) == 45
<5y>(ﬂ n/r) ﬂ—>1<§> . (45)
3.3 | Model formulation including slip limitation
The slip limitation is reintroduced (Equation [#6). The ductility u is considered to be finite.
U << oo 6,=H-6,<< 00 (46)
The end-slip §,,,,, is limited to the value 6,. The condition defines a limitation to the value of {. By introducing Equations 21|
and et
5max Sll L/2 5u
= =1/fsu=2 @7
y y y

This imposes a lower bound to the value of {. From this condition, Equation 53] holds:
(2¢"=1/u (48)
The criteria to define ¢ that includes the slip limitation (Equation 6] is the one of Equation A%
CBon/r,w) = max (' (B,n, 1), " () (49)
Here the parameter ¢’ is the one from Equation [39] and the parameter "’ comes from Equation [53] The two different cases can

be identified:

{C = or > Failure of the composite section 50)

=g or o< Failure of the shear connection
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End-slip
4 -
—_ Gmax\ _ _ NIr
L 3 ( ) ~ 2nir=2
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L
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)
g 24
&5
11 H
Plastic shear connection
0 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 8 Resulting graph for the end-slip as function of the ratio #/r for different values of the parameter f.

The end-slip and the over strength of the shear flow at support are calculated from Equations 23] 2T]and [53]

5 l 0< <2
<ﬂ> Bonoro ) = 4 SBaraw n/r s
5 2r/n n/r>2
I+ ( — -1 0<n/r<2
a(B.n,r,p) = P\ G ) n/r )
2r/n n/r=2

The non-dimensional capacity of shear connection #* is calculated according to Equation 28]
In ﬁgureﬂ;ﬁl the different graphs as function of the parameters g, n, r, are illustrated for a particular value of ductility u.

3.3.1 | Limit cases

Case u=1

In case of 4 = 1 (5, = 6,), the shear connection has no redistribution capacity. In figure @the different graphs for this case are
described. The overstrength factor a can assume a maximum value of @ = 1. The maximum transmissible force N, of the
shear connection is N, = vy ,,L/4. The end-slip 6,,,,, is limited to ,. The load capacity of the composite element is limited
by the limited capacity of the shear connection already for n < 2.

Case > ©

In case of 4 — oo, the shear connection has large redistribution capacity. In figure [I2] the different graphs for this case are
described. In the case f = 0 the maximum overstrength factor @ assumes value @ = 1. This case coincides with a rigid-plastic
shear connection with infinite redistribution capacity. In this case the notion of the parameter #* coincides with the notion of
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Figure 9 Resulting graph for the over-strength « as function of the ratio 5/r for different values of the parameter .

degree of shear connection. The ratio between the two is unitary. The rigid plastic case with no limitation has two different
interpretations. The first is 6, being reasonable and 6, being much smaller 6, << 6,. The second interpretation is 4, having
reasonable values with J, significantly larger 6, >> 4,.. The two cases are in the present model equivalent. The decisive parameter
is in fact the ductility u. For f — 0 but with strictly positive values § > 0, the value of ¥ of the shear connection tends to infinite.
This means that an equilibrium solution can be found that balances the force N, ,. This is valid as well for values /r < 1.

3.4 | Model summary

In figure[T3]the analytical scheme is summarized. The analytical formulation of the various parameters are presented below.
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Figure 10 Resulting graphs for variable values of f for a specified value of ductility 4 = 4. Note that as function f of the PSD
a specific function is proposed, thus consisting in an example. Therefore the M, r, vs n graph can not be applied generally but

specifically relates to the composite section studied and the related PSD function.
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Figure 11 Resulting graphs for variable values of § for the case of fragile (no ductility) shear connection, with s = 1. Note that
as function f of the PSD a specific function is proposed, thus consisting in an example. Therefore the M, r, vs n graph can not
be applied generally but specifically relates to the composite section studied and the related PSD function.
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Figure 12 Resulting graphs for variable values of § for the case of infinite redistribution capacity of the shear connection, with
p — oo. Note that as function f of the PSD a specific function is proposed, thus consisting in an example. Therefore the M, ,
vs 1 graph can not be applied generally but specifically relates to the composite section studied and the related PSD function.
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ANALYTICAL MODEL SUMMARY

Check hypothesis:

— uniform shear connection (uniformly spaced, equal shear connectors and constant number of rows);
— simply supported composite element;

— uniformly distributed load;
Input parameters:

— element geometry: span-length L;

— shear-connection: yield shear flow v, ,, yield slip 6, plastic hardening ratio §, ductility u;

— composite section: concrete compression force at ULS, FSI N, Partial Shear Diagram (PSD) M, p = M, ; g -
F(N./N, f)§

— composite element: degree of shear connection n = (v, - L)/(2N,;).

— load ratio: load ratio r = N,/ N, , expressed with reference to the concrete compression force at mid-span under the
specified load level N,.

Calculation of the non-dimensional parameters ¥ and r*:

P =2u+ D) +2u—1
2u

Y(u,p) = n*(B.n, u) =n-¥Y(u, p)

Calculation of the non-dimensional elastic length

CBon/r,w) = max (' (B,n,r),¢" ()

L+ pnfr—n/r—/=pn*[r>+2Bn/r+n?/r? = 2n/r + 1

&' Bon.r)
n/r(p—1)
CH — 1/#
Calculation of the end-slip 6,,,, and overstrength factor a.
1
<
<5'ﬂ> Bon, ) = 4 EGnran 0<n/r<2
> 2r/n n/r>2
148 (1) 0<n/r<2
a(ﬂ’ n,r, /4) b ﬁ EBn.r.p) 7]/

2r/n nr>2

Maximum transferable force by the shear connection and resistant bending moment on the basis of the Partial Shear
Diagram (PSD)

N N>
NeparBony =3 < .

MR(ﬁ’”? l’l) = f(Nc,max(ﬂ’ f’[, #)/ch) : Mpl,f,R
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Figure 13 Analytical model summary scheme

COMPARISON WITH NUMERICAL PARAMETRIC ANALYSIS

A numerical 1D method is used to carry out a parametric analysis. The numerical method consists in a finite differences method.
The method is explicit and implements the numerical resolution of the problem described in figure [3] It is based on a one-
dimensional finite differences method including the shear connection and cross-section non-linearity. It is solving the coupled
differential equations (Equations [2] [T) governing the behavior of the composite beam. The numerical method implements a
shooting technique. It transforms a Boundary Value Problem (BVP) into an Initial Value Problem (IVP). This consists in changing
a first boundary condition in order to respect a second one on the other boundary. The Partial Shear Surface (Equation [8) is
numerically derived with a Strain Limited (SL) analysis. This is used as model for the composite section. The shear connection
is modelled as Equation [I7} No ductility limit  is put on the slip. Convergence of the iterative method is reached when the
the boundary conditions (BCs) are satisfied. The first boundary condition is 6(0) = 0 (absent slip at mid-span). The second
boundary condition is N,(L/2) = 0 (absent concrete compression force at support). These BCs are numerically checked within

a small tolerance.

The varied parameters are:

L=(10)m

n=(2,1816,14,12,1.1,1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1)

f = (0.001,0.002, 0.005,0.01,0.02,0.05,0.1,0.2,0.5, 1)

5y =(1,2) mm

M(L/2)=(0.99,0.9,0.7,0.5,0.3,0.1) - M, ; pg4

(53)

By imposing the mid-span bending moment M (L /2) the bending moment diagram is known. The loading ratio r is calculated
222 when convergence of the numerical method is reached. In figures[T4]and[T5|the comparison between the analytical method and

the observed numerical results are shown.
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Figure 14 Over-strenght of shear-flow parameter a: comparison of the analytical model predictions (continuous lines) with the
numerical results (scatter plot).

5 | DISCUSSION

The proposed analytical model is based on a series of assumptions. These are described in Section . It is mainly limited to
simply supported composite beams under uniformly distributed load and evenly spaced shear connectors. A simple bi-linear
behavior is used as model for the shear connection. The model synthesizes a series of formulations which aim to predict the
mechanical behavior of the composite beam under the given assumptions. The basic governing parameters are the degree of
shear connection #, the loading ratio r, the shear connection hardening § and ductility . From these a prediction of the end-slip
Onax/ 0, can be derived. Moreover using the parameters ¥ and ;1 * it is demonstrates how the model converges under notable limit
cases to correct predictions in the calculation of the partial shear diagram and of hence the member resistance. The comparison
between the analytical method predictions and the numerical analysis, delivers a good outcome. Both the end-slip 6,,,, and the
over-strength factor a present an overestimation. The analytical model well describes however the trends of the distributions.
And the influence of the non-dimensional parameters clearly emerges in the parametric numerical analysis. Some of the main
consequences of the model are:

e the composite beam can be described in non-dimensional terms. This based on the key parameters 7 (degree of shear
connection), r (load ratio as defined by Equation[T8). In the analytical model these two parameters play a symmetric role.
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Figure 15 End-slip 6,,,,
plot).

max. comparison of the analytical model predictions (continuous lines) with the numerical results (scatter

The inverse of the load ratio r plays in fact the same role as the degree of shear connection #. The ratio between the

end-slip 6

max

and the yield slip 6, can be described as function of these non-dimensional terms. The same holds for the

over-strength factor alpha. It appears that the non-dimensional parameters identified are correctly reducing the the key
parameters to the minimum ones. This reflects good in the comparison in the graphs with non-dimensional axes.

e using the plastic hardening parameter g, the analytical model shows how the system shifts from an elastic-perfectly plastic

behavior to a perfectly elastic behavior.

e if in the elastic-perfectly plastic (no hardening) case the ductility u is set as sufficiently high, the model correctly con-
verges to the conventional model of rigid-plastic shear connection. Hence, delivering the same results as the conventional

calculations of the composite beam in terms of resistance.

o the Partial Shear Diagram appears in the analytical model as a consequence of the limitation of the slip 6 in the limit case
of no plastic hardening f = 0. The analytical model is first elaborated in absence of a slip-limitation in terms of ductility y.
From this, two key-diagrams have been derived. In absence of a slip limitation the model fails to describe the mechanical
behavior for the case of # = 0 (no plastic hardening of the shear connection) and #/r < 1. This is because the solution to
the equilibrium equation [36]does not exist. When a slip limitation y is introduced for the shear connection, the model well
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predicts the existence of the Partial Shear Diagram of composite beams. The necessity for the slip to respect the failure
criteria 6 < p6,, imposes a limitation to the beam load capacity. This explains and reproduces the Partial Shear Diagram.

e For f — 0 and large but finite values of u, the model outcomes converge to the conventional rigid-plastic description of
the shear connection. This leads the parameter n* being coincident with the notion of Degree of Shear Connection #. This
limit case leads also to the coincidence of the function M y(#) with the notion of Partial Shear Diagram.

e from the comparison between numerical and the analytical predictions that emerges from figure [I5] the formula related
to the limit § — 0, appears to be a reasonable upper limit estimation of the end-slip, thus slip demand on the shear
connection. If judged reliable, the formula can be used to calibrate reasonable design rules to impose a sufficient ductility
or conversely a minimum degree of shear connection for a specific type of shear connection mean.

e the ductility u together with the yield slip §, (or alternatively the plastic slip capacity J,) appear to be key parameters.
This evidences a potential lack of the current EC4X which only imposes a minimum value of the plastic slip capacity &,
to define the shear connectors as ductile. The future version of EC4 at the present version introduces a more complete
description of the shear connection in this sense. Probably trying to address this specific problem.

e from comparisons emerging from figure [14] and figure [I3] the analytical formulations appear to correctly catch more
than the values, the global trends, with the slope and the asymptotic distributions of the trends presenting a substantial
agreement.

e two beams of different span-lengths L with same value of Degree of Shear Connection # and same 6y, ULy 4 and g, have
the same mechanical behavior. These have according to the proposed model, same bending resistance and will exhibit
same end-slip. This can be identified as an equivalence principle between composite beams. These two beams would have
the same shear connection behavior and would deliver the same slip demand on the shear connection. This would hence
not justify a more severe minimum degree of shear connection for the longer beam.

o the analytical simplified model especially demonstrates how one of the key-driving parameter to quantify the end-slip
Oy 18 nOt the ultimate slip 6,. In contrary the end-slip can be quantified as a multiple of the value 6, with this multiple
being a function of the non-dimensional parameters #, f, r. The same reasoning holds for the over-strength of the shear
flow in the support region. This can be described as a multiple of the value v, ,, with the parameter « being this multiple.

o the over-strength factor a is also one of the outcomes of the model. The formulas describe the influence of the different
parameters on the longitudinal shear in the support region. This can in the future help understanding the effect of plastic
hardening of connectors for the longitudinal shear verification in the support region.

The method is not suitable for predicting the load-slip behavior for load distributions different from uniformly distributed. The
extension of it to other load distributions can however be evaluated in future works. It is supposed here that the method can be
generalized to a generic behavior of the shear connection P(6). In synthesizing the numerical method, a bi-linear mechanical
model was used. A second order equation was emerging from the equilibrium equation and this was allowing to analytically
find the roots as {. The process can be extended to a generic reasonable function P(6). This function can for example be derived
from real push out-test. In such case, a numerical method is more suitable to find the roots of . Similar extension can be done
with the parameter ¥ as defined by the integral in equation[26|and subsequent derivation of #*. The assumption that the method
is extendable to a generic P(6) needs however still to be verified. Numerical and possible tests have to be done in the future to
ascertain the reliability of the method. The assertion is aimed mostly as input for further research works.

6 | CONCLUSIONS

An analytical model representing the behavior of a simply supported composite beam under uniformly distributed load has
been synthesized. A uniform shear connection is considered on the longitudinal axis. A bi-linear elastic with plastic hardening
behavior is used and the ductility is also included. The model formulation is summarized in Section [3.4] It is built on the
simplification assumption of constant strain slip (e,;;, = const.). Despite the limitations and the simplification assumptions, the
model is coherent and consistent. Interestingly it shows how it connects in specific limit cases to the rigid-perfectly plastic or
perfectly elastic hypothesis. The model predictions are compared with numerically derived results. Qualitatively the global trends
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are well predicted by the analytical model. If judged reliable, the model can further improve the understanding the behavior of
composite steel-concrete beams. Further research is needed to judge weather the model is delivering reliable results. It tries to
describe the composite member in non-dimensional terms, reducing the number of degrees of freedom describing the problem to
the minimum. It can be potentially used to predict the beam end-slip, thus helping calibrating design rules for a minimum degree
of shear connection to prescribe in the codes. Equivalently it can help to judge specific connection means present sufficient
ductility based on their first yield point. The influence of the hardening factor on the overs-strength of longitudinal shear at the
support is also modeled. The related formula can help calibrating reliable design rules to perform the longitudinal shear check
in the support region. This is currently object of study for the implementations of future generation of EC4.
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Nomenclature

(1/r), ultimate curvature

1/r curvature

a shear-flow over-strength at support

p hardening factor

o slip

o, yield slip

€y;p  Slip strain

n degree of shear connection

n* non-dimensional capacity of shear connection

U ductility
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[0) rotation

b Y non-dimensional integral of the shear flow-slip model
e, shear connectors spacing

f Partial Shear Diagram normalized function

L span length

M bending moment

M, ; g resistant plastic bending moment in full shear connection

My  resistant bending moment of the composite element

n number of shear connectors

N, resultant of compression force on the concrete part of the section

ng number of shear connectors for Full Shear Connection

N, nax Maximum concrete compression force transferable by the shear connection

N.;  resultant of compression force on the concrete part of the section at ULS in Full Shear Interaction conditions

P bearing force in the single shear connector row

P, yield bearing force in the single shear connector row
q uniform load

r loading ratio

vy longitudinal shear-flow

Upy yield longitudinal shear flow

w deflection
x Coordinate of section from mid-span
X, yield point coordinate of section from mid-span
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