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a b s t r ac t

In this paper the main changes introduced into FprEN 1992-1-1:20231 [1] with respect to the current version of EC2 (EN 1992-1-
1:2004) [2] with regard to cracking and deflection calculations are introduced and justified. The changes introduced into the cracking 
formulation account for the variation of stresses in the tensioned zones for bending, the effect of the casting position and the influence 
of curvature on the increase of surface crack widths. The introduction of these effects, together with a reformulation of the effective 
area allow for a reduction of scatter in the model when compared to experimental data. For deflections, a simplified method is intro-
duced which is fully consistent with the general method and allows practical application by providing correction factors to be applied 
to linear elastic calculations. From this method a formulation for the slenderness limits is deduced. This formulation is the basis for the 
table-based method to avoid deflection calculations. Finally, coefficients are derived to translate the slenderness limits of beams to the 
slenderness limits of slabs supported on isolated columns and slabs supported on walls
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r e s u m e n

En este trabajo se introducen y justifican los principales cambios introducidos en la norma FprEN 1992-1-1:20232 [1] con respecto 
a la versión actual del EC2 (EN 1992-1-1:2004) [2] en relación con los cálculos de fisuración y flechas. Los cambios introducidos en 
la formulación de la abertura de fisura tienen en cuenta la variación de las tensiones en la zona traccionada en flexión, el efecto de la 
posición de hormigonado y la influencia de la curvatura en el aumento de la abertura de fisura entre el nivel de la armadura y la fibra 
más traccionada. La introducción de estos efectos, junto con una reformulación del área efectiva, permiten reducir la dispersión del 
modelo respecto de los datos experimentales. Para las flechas, se introduce un método simplificado que es totalmente coherente con el 
método general y permite la aplicación práctica al proporcionar factores de corrección que se aplican a los cálculos elástico-lineales. De 
este método se deduce una formulación para los límites de esbeltez. Esta formulación es la base del método basado en tablas para evitar 
los cálculos de flechas. Por último, se obtienen coeficientes para extrapolar los límites de esbeltez de las vigas a los límites de esbeltez de 
losas apoyadas en pilares aislados y de losas apoyadas en muros.
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1.
introduction

The work on the revision of Eurocode 2 started in 2012. The 
technical content of the revised document was approved by 
CEN-TC-250/SC2 in June 2022. The revision has therefore 
taken about 10 years. It is expected that the current draft will 
be ready for a formal vote in April 2023, but it will still not be 
fully operational until 2027 since the countries need to draft 
the National Annexes and there will be a transition period. This 
standard, when approved, will replace the standard approved in 
2004. It can therefore be stated that between revisions of the 
European standards a period of 25 to 30 years can easily go by. 

Some of the goals of the revision were to update the code 
incorporating the latest state-of the art, improve ease-of-use 
and reduce the number of nationally determined parameters.

In the revision of Section 7 Serviceability Limit States of 
EN 1992-1-1:2004 [2] (Section number updated to Section 
9), significant changes have been made to the cracking model 
that allow a reduction in scatter by introducing important 
effects which have been neglected up to now and can be 
credited with significant discrepancies between calculated and 
observed crack width values. These effects have to do with the 
distribution of stresses (tension or flexure), with the effect 
of casting position, and with the effects of curvature. These 
effects will be explained in detail and be illustrated using 
experimental evidence below. Also, since this is still a matter of 
controversy in some countries, the importance of accounting 
for the effect of cover will also be dealt with.

Additionally, content from EN 1992-3:2006 [3] has been 
incorporated into EN 1992-1-1, particularly considerations 
regarding the boundary conditions of elements subjected to 
imposed strains (whether a wall or a slab is restrained at the 
ends or at the edges.) This should help designers to better 
understand cracking and how when the restraint is on the edges, 
the differential strain between steel and concrete is mainly 
determined by the imposed strain whereas when the element is 
restrained at the ends, it depends on the cracking load.

Regarding deflections, the general method (z-method) has 
been kept as it was, since it provides relatively good approximations 
to tests [4] and relies on a robust model. However, in order to 
improve ease of use, a simplified formulation has been introduced 
which is consistent with the general method but is much easier 
to apply by practitioners. This method allows performing a 
linear elastic calculation to obtain the deflection and correct this 
calculation to account for cracking and tension stiffening effects. 
This method also forms the basis for the definition of slenderness 
limits (span-to-depth ratios).

2.
Justification of the model for the 
determination of cracK widths

2.1. Main changes in the model

The main changes introduced in the model (see Eq. (1))  are 
a factor to account for distribution of stresses (kfl) and a fac-
tor to account for casting position (kb), both of which  affect 

the bond term of the crack spacing equation, the introduc-
tion into the crack formulation of the curvature factor (k1/r) 
and the formulation of the model in terms of mean values, 
with an explicit coefficient (kw) to go from mean crack width 
values to characteristic values. The reason for this last change 
is that calibrations can only be meaningfully performed con-
sidering the mean values measured in the tests. 

Note that the predicted crack width is the crack at the 
surface of concrete. In the authors’ opinion it is important that 
the formulation describes a magnitude that can be measured 
so that the formulation may be tested against experimental 
evidence, which is the basis of the scientific method.

fctm

ρeff

sr,m,cal = 1.5c+         kfl kb  

εsm – εcm =                                     ≥ 0.6  (1)

wk,cal = kw k1/r sm (εrm,cal – εcm)     1.7 k1/r srm,cal (εsm – εcm)

1

7.2

ϕ

σs

σs – kt (1+α ρeff )

ρs,eff

EcEc

In the following the need for these change will be discussed 
in detail.

2.2. The importance of accounting for cover

There is overwhelming evidence that cover is a significant fac-
tor to explain the crack spacing ( [5] [6] [7] [8]) and should 
be explicitly accounted for. This is done by adding a cover 
term to the bond term when determining the crack spacing. 
Deniers of this fact have argued that this effect is already 
accounted for in the definition of the effective area, which, in 
fact, depends on the cover. However, the tests carried out at 
the Universidad Politécnica de Madrid in 20091 ([7]), clearly 
demonstrated that this was not enough by testing three pairs 
of otherwise identical elements (specimens 25-20-XX and 
25-70-XX where XX stands for the stirrup spacing in cm 
going from 00 (no stirrups) to 10 cm and 30 cm) having very 
different covers (32 and 82 mm) but the nearly same effec-
tive area as per the definition included in EN 1992-1-1:2004. 
The specimens with the higher cover had a maximum crack 
width opening which was twice as large as that of the spec-
imens with the smaller cover. It was quite notable that for a 
service stress in reinforcement of only 250 MPa (determined 
on the basis of a cracked section) the maximum measured 
crack width was around 0.6 mm, much higher than the val-
ues normally deemed admissible (see Figure 1).

There has been an attempt ([9]) to explain this difference 
by claiming that in Specimens 25-70 the stabilised cracking 
was not reached whether as in specimen 25-20 it was and 
therefore different values of the bond strength could explain 
this behaviour. Unfortunately, this hypothesis is not supported 
by the experimental data which shows that for both tests 

1  All specimens were RC sections subjected to a constant bend-
ing zone, having a width of 350 mm, a height of 450 mm, all 
reinforces with 4 bars in tension. The naming of the specimens is 
AA-BB-CC, where AA is the bar diameter in tension in mm, BB 
is the cover to the stirrups in mm (12 mm stirrups) and CC is the 
stirrup spacing in cm in the constant moment zone area. CC=00 
means there are no stirrups.

92 – Pérez, A., Bellod, J.L., Torres, L., & Kanstad, T. (2023) Hormigón y Acero 74(299-300); 91-108



stabilized cracking is reached at a stress in the reinforcement 
of about 200 MPa, as shown in Figure 2.

Given this information, the authors of this paper consider 
the need for an additive cover term to be a settled matter. The 
physical explanation for this term is that internal cracks (Goto 
cracks) form at each rib. A larger proportion of these cracks 
tend to close before reaching the surface for elements with 
larger covers. This effect is not modelled by bond theory and 
thereby requires the corresponding correction in the form of 
an additive cover term.

2.3. Effect of casting position

It is a well-established fact (e.g., see [2], [10], and [11]) that 
casting position affects the required anchorage length of re-
inforcing bars. In ULS, the anchorage length has traditionally 

been increased by a factor of 1.4 for bars in horizontal ele-
ments which are close to the top surface. This modification has 
to do with the appearance of voids under the top bars due to 
plastic settlement and bleeding, which reduces the bond pe-
rimeter of the bar. Even though cracking has to do with bond 
(and a bond factor has been present in codes – for instance fac-
tor k1 in EN 1992-1-1:2004  which accounts for the different 
bond properties of ribbed and smooth bars) casting position 
has – to the knowledge of the authors – never been considered 
in models dealing with crack spacing [12].

However, tests carried out at the Universidad Politécnica de 
Madrid (UPM), show strong evidence that casting position has a 
substantial effect on crack spacing. The flexural specimens 12-70-
00 and 12-70-F tested in 2009 [7] and 2017 [13], respectively, 
with identical geometry (though slightly different concrete mix 
proportions), showed substantial differences in crack spacing 
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Figure 1. Maximum crack width measured in identical specimens with different covers and nearly the same effective area [7]. The maximum crack 
within the specimens with larger cover doubles the maximum crack width in the specimens with the smaller cover. The crack width, wmax

lat is mea-
sured at the side of the beam at the level of the tension reinforcement.

 Figure 2. Number of cracks as a function of the steel stress for specimens 25-20-00 and 25-70-00. The crack pattern is stabilized for a stress in 
steel of about 200 MPa.



(see Figure 3). Besides the concrete mix (which is known not to 
have an important effect on cracking), the only difference was 
the casting position of the tension reinforcement. In the beam 
tested in 2009, the tensile reinforcement was cast in ‘poor’ casting 
position (top), while in the test carried out in 2017, it was cast 
in ‘good’ casting position (bottom). The beam tested in 2009 
showed a mean crack spacing of 258 mm, while the element 
tested in 2017 showed a mean crack spacing of only 161 mm.

The effect of casting position has been confirmed by 
analysis of the cracking pattern of ties, where the face cast 
in good casting position has a definite tendency to develop a 
cracking pattern with more closely spaced cracks. Figure 42 
also illustrates this fact using results of specimen 16-20-T 
tested in 2017.

Given this evidence a more systematic study was 
undertaken at the Universidad Politécnica de Madrid [14]. In 
this study companion flexural tests were performed in good 
casting conditions for flexural specimens previously tested 
in poor casting conditions. Additionally for one of the tests, 
25-20-B, the earlier with poor bond conditions was repeated. 
The results of this study, which includes tests carried out in 
2009, 2017, 2018 and 2020, are summarized in Table 1. In all 
cases, the face concreted in poor conditions showed a larger 

2  The beam was rotated when tested so that the two faces shown 
were subjected to identical forces from self-weight.

crack spacing when compared to the face of the corresponding 
specimen concreted in good bond conditions. Additionally, the 
table shows that workmanship has a significant influence on 
this effect. For specimen 25-20-B, the increase in elements 
concreted in the laboratory is only 11.3%, while the effect is 
51.1% when comparing with an element cast on site with poor 
bond conditions.

While the effect of bond conditions on cracking is clear 
from these results, it has not been studied before. Because of 
this the evidence is still scant and does not allow the formu-
lation of an experimentally validated model, even though the 
results clearly show an effect of the workmanship, as noted 
above, and possibly an effect of the bar diameter and the cov-
er. Because of the lack of data, the new formulation proposes 
fixed-value coefficients which are meant to be a recognition 
that this effect exists and that need to be improved in the 
future as further data becomes available. The effect is there-
fore accounted for by a coefficient kb, which affects the bond 
term of the crack spacing equation and adopts a value of 0.9 
for good bond conditions and 1.2 for poor bond conditions.

2.4. Effect of the distribution of stresses

A new coefficient is suggested to model the effect of uneven 
distribution of stresses when dealing with elements subjected 
to bending. 
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Figure 3. Cracking patterns of beams cast in ‘good’ casting position (top) and ‘poor’ casting position (bottom).

Figure 4. Cracking pattern of a tie showing different crack spacing on different faces.



To account for this effect, in EN 1992-1-1:2004 [2], the 
model for crack spacing includes coefficient k2 defined as 
follows (Eq. (2)): 

(ε1 + ε2)
2ε1

k2 =  (2)

where e1 and e2 are the greater and lesser tensile strains in the 
section (e2= 0 if part of the section is compressed.) With this 
definition k2=1.0 in tension and 0.5 in flexure.

The rationale behind the above factor is that, in bending, 
the transfer length will be shorter because the tension force 
per meter of width (coloured area in Figure 5) that has to 
be transferred by bond to the effective concrete area from 
an existing crack to produce a new crack will be half that in 
pure tension because the strain of the least tensioned fibre 
is zero, and therefore the transfer length would also be half. 
The current Eurocode 2 (EN 1992-1-1:2004) formulation, 
however, instead of providing small crack spacings in flexure, 
is calibrated in such a way that the model results in notoriously 
exaggerated crack spacings for tension elements (see [15] 
Figure 1).

The above reasoning, as shown in Figure 5, is not sound 
because what matters is not the stress gradient within the 
full tensile zone itself but rather the tensile gradient within 

the effective area around the bar. In a bending element of 
significant height, the effective area can represent only a small 
part of the cross-section in tension and the approximation of 
a tie, as done in MC 2010 [16] can be reasonable. However, 
in small elements, the model of EC2 would be better. Figure 6 
demonstrates that, for tension, the mean stress, σmean, in the 
effective area will be fctm when the next crack occurs. However, 
in the case of flexure with the simplifying assumption of a 
linear distribution, the mean stress can be determined as 
shown in Eq. (3):

fct,eff

h–xg

1

2

1

2

1

2
σmean =      ( fct,eff  + σc,min,ef ) =       fct,eff +        (h–xg – hc,eff)  = 

= fct,eff           1+ (3)
(h–xg – hc,eff)

h–xg

kfl

where xg is the depth of the neutral axis in the uncracked 
section and kfl is the coefficient accounting for the distribution 
of stresses. This expression results in a value for kfl of 1.0 for 
pure tension (xg=∞) and of 0.5 in pure flexure if hc,ef is equal 
to (h-xg).

For a rectangular cross section and pure bending, the 
expression for kfl of Eq. (3) simplifies to Eq. (4):
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TABLE 1.
Effect of casting position as measured in tests carried out at UPM (taken from [4]).

SPECIMEN
   Mean Crack Spacing according to Bond Condition (mm)

 Good Poor Lab. Increase Poor On-site Increase

12-20-B-X 115 -   - 173 50.4%

16-20-T-X 147 170.5 16.0%  - - 

16-20-B-X 105 109.8 4.6% -   -

25-20-T-X 115 171 48.7% -  - 

25-20-B-X 86.7 96.5 11.3% 131 51.1%

12-70-B-X 162 -  -  236 45.7%

16-70-T-X 220 232 5.5% -  - 

16-70-B-X 183 188 2.7% -  - 

25-70-T-X 184 230 25.0% -  - 

25-70-B-X 148.3 -  -  227 53.1%

 
Average -   - 16.2% - 50.1%

Figure 5. Effect of distribution of stresses prior to cracking on transfer length according to EN 1992-1-1:2004.



kfl =      1+                        =      1+                  =      2–             =

= (4)

1

2

h
2

h
2

1

2

1

2

(h–xg – hc,eff)

h–hc,eff

2hc,eff

h–xg

h

h

– hc,eff

This approach is, of course simplified, since it assumes that 
the distribution of stresses within the effective area is linear 
and follows Navier’s law. This, of course, is not strictly true. 
Nonetheless, recent FEM calculations [9] show that the 
assumption of a constant stress within the effective area is not 
correct and that the actual distribution of stresses becomes 
more similar to a triangular distribution as the height of the 
section is reduced, while it becomes more concentrated as the 
height increases (see Figure 7). The proposed simplified model 
is consistent with these findings.

The need to distinguish between elements subjected to 
flexure and tension has been shown very clearly in [14] from 
which Table 2 is adapted. The table shows results from several 
tests, all involving a b x h = 350 x 450 mm rectangular section 
coded with the bar diameter in tension (4 bars), followed by 
the cover to the stirrups (for the cover to the longitudinal bars, 
add 12 mm), type of test (B=bending, T=tension) and the 
casting position (G=good, PL=Poor in Laboratory conditions).  

In Model Code 2010 [16], this effect is accounted for, in 
an obscure way, by limiting the height of the effective area 
around a bar in bending to (h-x)/3, whereas there is no such 
limit in tension. As far as the authors are aware there is no 
published justification for this factor which seems to be 
originating from curve fitting to test data. Besides the lack 
of clarity regarding where this factor comes from, it provides 
very strange differences for the effective area depending on the 
type of force applied. Figure 8 shows the effective area for one 
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Figure 6. Consideration of the effective tensile area around a bar in flexural elements.

Figure 7. FEM estimate of stresses between cracks [9]. For smaller heights, the stress distribution tends to be triangular whereas for larger elements 
the is a stronger stress concentration. This behaviour is consistent with the simplified proposal for kfl.



of the tests reinforced with 4 25 mm bars and having a cover of 
82 mm. The ratio between effective heights is larger than 2.00. 
This is because the (h-x)/3 limits the height of the effective area 
for the element subjected to bending. The difference is hard to 
justify from physical considerations or from what the effective 
area stands for (i.e. the area of concrete that is effectively 
tensioned by a bar (or group of bars), or the equivalent area 
of concrete that has to reach the tensile resistance of concrete 
for form a new crack adjacent to an existing one, assuming that 
Navier’s hypothesis is valid). 

Figure 8. Effective area for specimens with 25 mm diameter and 82 
mm cover in bending and tension [7].

Table 2 shows that this factor has no influence for small covers, 
whereas experimental results report a spacing that is 40% 
higher in tension than in bending. On the other hand, for large 
covers, the effect seems to be too large (50% compared to 20 
to 33% in experimental results). 

In the same table the same results provided by EN 1992-
1-1:2004 are given. This model is accounting for the effect 
of the distribution of stresses twice, once through the limit 
to the effective area height (h-x)/3 and again through factor 
k2. This results in a significant overestimation of the effect of 
distribution of stresses with the (T-B)/B coefficients ranging 
from 58% to 72%, much higher than the experimental values.

It is clear that current formulations do not properly account 

for this effect. Looking at the performance of the proposed 
method, at first glance, it would seem that while it performs 
better than the model of EN 1992-1-1:2004 and MC 2010, 
it still provides rather poor performance. However, it must 
be considered that this comparison is measuring not only the 
error in kfl, but also in kb, the effective area and the calibration 
coefficients of the cover and bond terms. The comparison can 
be improved by considering the experimental values of kb 
for comparisons referring to the face concreted in poor bond 
conditions. These values can be obtained from Table 3, below. 

The experimental value of kfl can then be obtained for the 
coarse value of kb, assuming that this value is the same for the 
tension and flexural tests as follows (kϕ/ρ is a calibration factor 
for the slip term):

sr,m,cal,B – kc c = kϕ/ρ kfl  kb  

sr,m,cal,T – kc c = kϕ/ρ 1.00 kb  
 kfl  = (5)

ϕ

ϕ

ρs,eff

ρs,eff

sr,m,cal,B  –  kc c
sr,m,cal,T   –kc c

where:
sr,m,cal,B is the calculated mean crack spacing in bending
sr,m,cal,T is the calculated mean crack spacing in tension

The fact is, however, that the experimental kb factor for the 
specific tie of the specific flexural element is not the same, so, 
in order to eliminate this noise from tests performed in poor 
bond conditions, the kfl can, instead, be obtained accounting 
for this difference:

sr,m,cal,T – kc c = kϕ/ρ 1.00 kb,exp,T  

sr,m,cal,T – kc c = kϕ/ρ 1.00 kb,exp,B  

 kfl  = (6)
ϕ

ϕ

ρs,eff

ρs,eff (sr,m,cal,B  –  kc c) kb,exp,T

(sr,m,cal,T   –kc c) kb,exp,B

Table 3 shows how the “experimental” value of kfl compares 
with the theoretical value when the noise due to errors in 
kb is compensated for in the tests having bars in poor bond 
position. In the table the ratio of the theoretical value over the 
experimental value of kfl (th/exp) is given for the case where 
the value of kb is taken as either 0.9 or 1.2 (“coarse” value if kb), 
as well as for the case when a measured value for kb is available 

Pérez, A., Bellod, J.L., Torres, L., & Kanstad, T. (2023) Hormigón y Acero 74(299-300); 91-108 – 97

TABLE 2. 
Experimental results comparing stabilized crack spacing in bending and tension tests and predictions by the new version of EN 1992-1-1, the Model Code 2010 and the current 
version of EN 1992-1-1 (adapted from [14]).

 FprEN 1992-1-1:2022 MC 2010 EN 1992-1-1:2004

 Measured mean crack spacing (mm) Predicted mean crack spacing (mm)

 B T Inc. B T Inc.  B T Inc. B T Inc.
   (T-B)/B   (T-B)/B   (T-B)/B   (T-B)/B

12-20-B/T-G 115 162 0.41 137 162 0.18 182 182 0.00 152 240 0.58

16-20-B/T-G 105 147 0.40 125 152 0.22 151 151 0.00 134 203 0.52

16-70-B/T-G 183 220 0.20 213 262 0.23 233 352 0.51 248 477 0.93

16-20-B/T-PL 109.8 170.5 0.55 150 187 0.25 151 151 0.00 134 203 0.52

16-70-B/T-PL 188 232 0.23 243 309 0.27 233 352 0.51 248 477 0.93

25-20-B/T-G 86.7 115 0.33 105 135 0.29 113 119 0.05 110 163 0.48

25-70-B/T-G 148.3 184 0.24 186 245 0.32 175 260 0.49 212 365 0.72

25-20-B/T-PL 96.5 171 0.77 124 164 0.32 113 119 0.05 110 163 0.48

Average 129 175 0.39 160 202 0.26 169 211 0.20 168 287 0.64

BEAMS



(exp value of kb). For elements with bars in good bond position 
this factor does not change, and the base value remains the 
same. The improvement is significant with the mean value of 
the ratio between theoretical and experimental results going 
from 1.28 to 1.19 and the coefficient of variation reducing 
from 16% to 9%. If anything, these results seem to indicate 
that the correction for type of loading should be even stronger 
(lower values of kfl). 

2.5. Definition of the effective area of concrete in tension

The definition of the effective tensioned area is changed to 
account for the removal of the (h-x)/3 limit, to deal with 
some inconsistencies in its current definition (limit to the 
area of concrete that is influenced by the presence of the bar) 
and to contribute to reduce scatter. 

For an isolated bar, the proposed definition of the effective 
area is given in Figure 9 and the following equation:

Ac,eff,bar = bc,eff hc,eff

hc,eff = min (ay + 5ϕ;10ϕ;3.5ay) ≤ h–x  (7)
bc,eff = min (ax + 5ϕ;10ϕ;3.5ax)

When individual tension areas of different bars overlap, 
the effective reinforcement ratio should be considered for 
the group of bars, as shown in Figure 10 and the following 
equation:

Ac,eff,group = bc,eff hc,eff

hc,eff = min (ay + 5ϕ;10ϕ;3.5ay) + sy ≤ h–x  (8)
bc,eff = b
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TABLE 3. 
Evaluation of kf l , accounting for experimental values of kb tests referring to poor bond conditions.

 coarse value of kb exp value of kb

  kfl, th kb kfl, exp th/exp  kb, F kb, T kfl,exp,2  th/exp

12-20-B/T-G  0.782 0.9 0.588 1.33  0.90 0.90 0.588 1.33

16-20-B/T-G  0.733 0.9 0.576 1.27  0.90 0.90 0.576 1.27

16-70-B/T-G  0.644 0.9 0.619 1.04  0.90 0.90 0.619 1.04

16-20-B/T-PL  0.733 1.2 0.504 1.45  0.98 1.11 0.571 1.28

16-70-B/T-PL  0.644 1.2 0.596 1.08  0.98 1.01 0.615 1.05

25-20-B/T-G  0.654 0.9 0.578 1.13  0.90 0.90 0.578 1.13

25-70-B/T-G  0.512 0.9 0.415 1.24  0.90 0.90 0.415 1.24

25-20-B/T-PL  0.654 1.2 0.394 1.66  1.13 1.65 0.576 1.14

    Mean = 1.28    Mean = 1.19

    CoV = 16%    CoV = 9%

Figure 9. Effective tension area of concrete around an isolated bar, Ac,eff,bar.



Even though for the example of Figure 10, the strict 
definition given for the isolated bar would result in a U 
shape for the effective area, this has been simplified (on the 
conservative side) by a rectangle, to improve ease of use.

As mentioned above, a limit on the effective area around 
a bar is given as a linear function of the bar diameter. This 
condition accounts for the fact that a bar can only control 
cracks within its proximity. With the definition of the effective 
area given in MC 2010 and EN 1992-1-1:2004, a single bar 
placed in the middle of a large rectangle of concrete would 
have an effective area equal to the area of concrete, and the 
value of the effective area would increase indefinitely with the 
dimensions of the cross section. This does not make sense and 
a limit is therefore necessary for consistency. 

2.6. Effect of curvature on crack width

Regarding crack width, it has been well established that, in 
bending, the value of the crack opening increases from the 

level of the reinforcement towards the most tensioned face 
(see for instance the tests reported in reference [7]). The in-
crease in the crack opening is proportional to coefficient k1/r, 
defined, as follows:

k  = (9)h–x
d–x

where:
h is the section height
d is the effective depth, and
x is the depth of the neutral axis of the cracked section

As an illustration, Figure 11 shows a typical example of the 
accuracy of this correction using one of the tests carried out 
at UPM (specimen 25-20-00 [7]). The maximum crack width 
measured at the level of the reinforcement on the side of the 
beam is plotted against the maximum crack width measured 
over the exterior bar at the top of the section, both vertical 
and horizontal covers being the same (32 mm). A nearly per-
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Figure 10. Effective tension area of concrete around a group of bars, Ac,eff,group (to be applied when effective tension areas of adjoining bars overlap).

Figure 11. Illustration of the performance of factor k1/r on one of the tests.



fect linear correlation is obtained with a slope which closely 
mirrors the result obtained by applying the definition of the 
k1/r factor. This result is not the fruit of chance. Table 4 shows 
a comparison between the slope of the correlation line, m, de-
termined as in Figure 11 and the value of the k1/r factor for all 
the flexural tests carried out at UPM until now (14 tests). The 
ratio between these two values is always very close to 1.00 and 
the coefficient of variation is only 3.6%. This is a clear indica-
tion that this factor is quite accurate and very necessary if an 
adequate estimate of the surface crack is to be obtained.

This factor is particularly necessary when estimating the 
crack width of flexural elements with large bars. Typically, 

such elements have large covers and large reinforcement ratios 
resulting in large values of x, and thereby in large values of the 
k1/r factor. This can be illustrated with the tests carried out by 
Hegger et al. [17] (also reported in [18]). These tests involve 
large bar diameters (from 40 to 60 mm) and covers ranging 
from 40 to 75 mm. Figure 12 shows the test set-up as well as 
the definition of the sections. Figure 13 shows the comparison 
between mean crack openings predicted by the model of 
FprEN1992-1-1:2022 and those actually measured. A good 
approximation is obtained with the correlation slope being 
close to 1.00 and having a high coefficient of determination. 
The mean value of the ratio of mean calculated to mean 
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TABLE 4. 
Comparison between the slope of the correlation line (m) and factor k1/r for all flexural tests performed at UPM (st is the stirrup spacing).

Figure 12. Test set-up and cross section of tests. Figure taken from [18]. Note that the elements were tested with the large reinforcement bars on 
the top (rotated 180º with respect to the cross sections shown).



experimental crack width (wm,calc/wm,exp) is 1.01 and the CoV is 
12.4%. This result is independent experimental confirmation 
of the performance of the model since these tests were not 
considered for the calibration of the model. 

This model can also easily account successfully for the 
effect of adding surface reinforcement to control crack width 
in elements reinforced with large diameter bars and can be used 
to justify experimental rules (see [19]). The main reasons why 
the introduction of surface reinforcement reduces the crack 
widths are the reduction of cover, the reduction in factor k1/r, 

the increase in the effective reinforcement ratio, and, to a lesser 
extent the reduction in the equivalent bar diameter and the 
increase in total reinforcement, this last factor having a very 
minor effect. Also note that kfl increases because hc,eff decreases.

2.7. Type of restraint

It is well known that elements that are subjected to imposed 
deformation and restrained at ends are subjected, at most, to 
the cracking force. This is because the magnitude of the im-
posed strains that are found in normal structural concrete ap-
plications are small enough for the element to be in the crack 
formation stage. As the imposed strain increases, when the 
stress in concrete between cracks reaches the tensile strength 
of concrete, a new crack forms and the forces are reduced 
because the stiffness is reduced. New cracks will form each 
time this happens as the imposed strain increases. Therefore, 
the cracking force is the maximum force that can develop in 
the element with restrained ends. This behaviour is possible 
because the formation of a new crack affects the distribution 
of forces in the whole element. 

When the element is restrained at the edges, the behaviour 
is different, because compatibility cannot be achieved globally 
as in the previous case but has to be met locally because the 
length of the edge does not change. The formation of a crack 
does not relieve stresses at a certain distance from the crack so 
that cracks form independently from one another. Figure 14 

shows the behaviour in this case3. Ignoring tension stiffening 
effects, if sr is the distance between two cracks the concrete 
between the cracks would shrink a length equal to the imposed 
deformation and therefore the crack opening would be sr eimp. 
So, the crack opening is no longer a function of the steel stress but 
a function of the imposed deformation. Accounting for tension 
stiffening effects, the relative strain between steel and concrete 
can be expressed as in Eq. (10). If the edges are not totally 
restrained the imposed deformation is obtained by multiplying 
the free imposed strain by a restraint factor which is determined 
from a linear elastic analysis which accounts for the flexibility of 
the restraint in which the free strain is applied on the structure. 
The restraint factor is a function of the ratio between the strain 
that develops freely in the element and the imposed strain.

3 The behaviour is simplified here for the purpose of explanation. 
In actual structures the stabilized crack pattern will normally not 
have been achieved and the adjacent cracks would normally not be 
formed. sr would represent the transfer length in such a case.
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Figure 13. Comparison between mean crack width predicted by the model of FprEN1992-1-1:2022 [1] and the values measured experimentally.

Figure 14. Cracking: behaviour of an element retrained at the edges. 
It is assumed that the edges are fully restrained. Tension stiffening 

effects are not included.



εsm – εcm = εimp – kt  

εimp = Rax εfree  (10)

fct,eff

Ecm

where:
Rax is the restraint factor, which is obtained as , 

where εrestr is the strain that develops freely in the restrained 
element and εimp is the imposed strain (e.g. free shrinkage, free 
temperature strain).

2.8. Calibration and comparison

The formulation has been calibrated to determine the 
coefficients to be applied to the cover term and the bond term. 
The expressions for the mean crack spacing can be written as 
follows:

sr,m,cal = kc c + kϕ/ρ kfl kb          , (11)
ϕ

ρs,eff

where: 
kc is an empirical parameter account for the influence of the 

concrete cover not accounted for in the bond term; as a 
simplification, kc = 1.5 can be assumed;

c is the maximum concrete cover. The maximum value 
has been adopted because recent research [20] confirms 
that, when vertical and horizontal covers are different, 
crack spacing is much better correlated to the maximum 
cover than to minimum cover. When the effective area 
concept applies to a single bar located in the perimeter 
of the section, the maximum cover of this bar applies. 
When the effective area applies to a group of bars, the 
most unfavourable value of cover of the bars located in 
the perimeter of the section should be considered;

kf/r is an empirical parameter to account for the influence of 
bond; as a simplification, kf/r =1/7.2 can be assumed.

The design crack width is obtained from Eq. (12).

wk,cal = kw k1/r sr,m,cal (εsm – εcm) (12)

where:
kw is a factor to obtain a design value of the crack width from 

the mean value, which can be taken as 1.7;
εsm is the average steel strain over the length sr,m,cal;
εcm is the average concrete strain over the length sr,m,cal;

For members subjected to direct loads (stabilized crack-
ing) or for members subjected to imposed strains (crack 
formation phase) restrained at the ends, εsm– εcm can be de-
termined as in Eq. (13). 

εsm – εcm =      σs – kt               ( 1+αe ρeff) (13)
fct,eff

ρct,eff

1

2

where:
Es is the modulus of elasticity of steel;
σs is the stress of steel at the crack;
kt is an empirical coefficient to assess the mean strain over 

the transfer length, equal to 0.6 for short-term analy-
sis and equal to 0.4 for long-term analysis or repeated 
loading;

fct,eff is the effective tensile strength of concrete, which in 
practical cases can be taken as the mean tensile strength 
fct,m;

αe is the modular ratio=Es /Ec;

For members subjected to imposed strains and restrained at 
the ends, the applied load is assumed to be the cracking force 
and the parenthesis in Eq. (13) simplifies to:

σs – kt                (1+αe ρeff)  =         (1+αe ρeff) (1–kt) (14)
fct,eff

ρeff 

fct,eff

ρs,eff 
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Figure 15. Comparison between predicted and measured crack spacing, separated according to type of load.



For members subjected to imposed strains and restrained at 
the edges, εsm– εcm can be determined as in Eq. (10). 

Figure 15 shows the comparison between predicted values, 
srm,FprEN1991-1:2022, and experimental values of crack spacing, sm,exp. 
The correlation lines show a coefficient of determination of 
0.95 in flexure and 0.97 in tension and a slope close to 1.00. 
Contrary to the current version of EC2, for which the crack 
width in tension specimen is overestimated, there is no skew 
between tension and flexure in the new proposal. This is due 
to the deletion of the (h-x)/3 limit and the introduction of 
factor kfl.

Table 5 shows the statistical parameters referred to the 
73 tests used for the calibration for crack spacing which 
includes tests by [21], [22], [23], [24], [7], [13], [25], [26], 
[27] (see [28]). The table includes the mean squared error, 
the minimum value of the ratio of model prediction and 
experimental values (min), its maximum value (max), its 
mean value (μ), its standard deviation (σ) and its coefficient 
of variation (COV).

It can be seen the proposed corrections improve the 
prediction quality in statistical terms, for all the considered 
statistical parameters, both in flexure and in tension with 
respect to both the formulation of MC 2010 and EN 1992-
1-1:2004. The improvement in tension is related to the 
changes introduced in the definition of the effective tension 
area.

2.9. Verification of the calibration using an alternative data set

The model has been calibrated with the same data set 
(calibration set) as was used for the original calibration of 
MC 2010, with the addition of several experimental series, 
as mentioned above. The  robustness of this calibration was 
verified using a separate set of data (test set – see [28]). The 
independent database includes a total of 144 specimens. This 
database consists of the following tests:
- Clark (54 specimens) [22]
- Rehm&Rüsch (30 specimens) [25]
- Gribniak (6 specimens) [29]
- Gilbert & Nejadi (12 specimens) [30]
- Calderón (14 specimens) cast in poor casting position [31]
- Wu (4 specimens) – 2 Tests with excessive side cover were 

discarded [32]
- Frosch (2 specimens) – Other tests with excessive side 

cover were discarded – Poor casting position [33]
- Case, Beeby (16 specimens) – Tests with mild reinforcement 

were discarded [34]
- Klakauskas (6 specimens) [35]

The details of the specimens are available in [28].

Figure 16 demonstrates the performance of the proposed 
model on the independent test set. Even though there is 
scatter, the model proves to be well-calibrated. Table 6 shows 
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TABLE 5. 
Statistical analysis of crack spacing.

  MC 2010 EN 1992-1-1:2004 FprEN 1992-1-1:2022

  Flexure Tension Flexure Tension Flexure Tension

 nº of tests 37 36 37 36 37 36

 (∑ε2/N) 38.28 37.96 35.25 83.01 29.01 30.97

 min(sm,model/sm,exp)= 0.46 0.51 0.6 0.68 0.53 0.67

 max(sm,model/sm,exp)= 1.78 1.51 1.74 2.04 1.47 1.34

 μ = 1.04 1.05 1.08 1.43 1.00 1.01

 σ = 0.29 0.22 0.27 0.30 0.24 0.16

 COV = 27.68% 21.18% 24.69% 21.25% 23.57% 15.62%

Figure 16. Comparison between predicted and measured crack spacing for the independent test series.



the corresponding statistical parameters. It can be observed 
that the application of the proposed modification reduces the 
coefficient of variation from 23.0% for MC 2010 and 24.6% 
for EN 1992-1-1:2004 to 18.9%. This result corroborates the 
need for the corrections proposed to account for differences 
between flexure and tension.

3.
deflections

3.1. Simplified method for deflection control

The general method for determining deflection (z-method) has 
been left untouched in the FprEN1992-1-1:2022 [1], because 
there was no reason to change it as it provides satisfactory 
results and has a solid basis. However, it is notorious among 
practicing engineers that this method is not easy to apply to 
real projects, for which linear models with complex geometries 
are used. The current practice consists in determining a certain 
factor to apply to linear elastic calculation in order to obtain 
an estimate of the deflection considering creep and shrinkage 
effect. Up to now the determination of this coefficient has been 
done using approximate methods whose basis is not fully clear. 
In order to improve ease-of-use, and provide a common basis 
for this practice, a simplified approach is provided, in which 
the long term cracked deflection can be easily obtained by 
taking the linear elastic deflection and correcting with simple 
coefficients that account for cracking and tension stiffening 
effects as shown in Eq (15).

δ = kI [δLOADS +kS δεcs] (15)

The basis of this procedure is an approximation to the long-
term ratio between the cracked and uncracked sectional inertia. 
It results that this ratio can be approximated with significant 
precision with a fairly simple formulation for rectangular 
sections. Figure 17 shows this approximation. Note that αe,eff 
is the long term modular ratio, which accounts for creep (see  
Eq. (16)).

αe,eff =     (1+φ)= (16)
Es

Ec

Es

Ec,eff

The creep coefficient can be taken as weighted mean value 
(φmean) according to the following expression:

φmean = (17)
φ(t, t0)gSW + φ (t, t1)gSDL + φ(t, t2)ψ2 qLL

gSW + gSDL + ψ2 qLL 
where:
gSW is the self-weight, applied when the concrete age is t0 ;
gSDL is the superimposed dead load applied when the 

concrete age is t1;
ψ2qLL is the quasi-permanent live load applied when the 

concrete age is t2;
t is the age of concrete corresponding to the service life 

of the structure.

Using the approximation to the ratio Icr /Ig shown in Figure 17, 
and applying the methodology of the z-method which consists 
in interpolating a stiffness between the fully cracked and 
uncracked values, factor kI is determined as shown in Eq. (18).

ζ =  1– 0.5 
Mcr

Mk

Ig

Icr

h
d

1
2.7 (αe,eff  ρ)0.6KI = ζ       + (1– ζ )= ζ                               +(1– ζ ) (18)

The deflection due to shrinkage is obtained by applying a 
constant shrinkage strain on the structure, determining the 
elastic deflection, and correcting this by a coefficient that 
takes into account how the ratio between the equivalent and 
the uncracked first order moment of the reinforcement with 
respect to the centroid of the cross section changes due to 
cracking and tension stiffening effects. The correction in this 
case is given in Eq. (19). Figure 18 shows calculated values of 
this ratio for 3 different concrete strengths and the proposed 
approximation as a function of the reinforcement ratio.

ks = 455ρ2 – 35ρ + 1.6 (19)
  

3.2. Slenderness limits for beams

Eq. (15) can easily be converted into a general formulation to 
determine the slenderness limit. Eq. (20) shows the condition 
for the slenderness limit, i.e., that the deflection be limited 
to a fraction (1/a) of the span (where a is usually taken as 
250). It also shows the expressions of the deflections due to a 
uniformly distributed load and to a constant curvature due to 
shrinkage.
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TABLE 6. 
Statistical analysis of crack spacing for the independent data set.

  MC 2010 EN 1992-1-1:2004 FprEN 1992-1-1:2022

 nº of tests 144 144 144

 (∑ε2/N) 26.97 26.3 23.55

 min(sm,model/sm,exp)= 0.54 0.51 0.53

 max(sm,model/sm,exp)= 1.87 1.63 1.76

 μ = 1.05 0.99 1.04

 σ = 0.24 0.24 0.2

 COV = 23.04% 24.56% 18.85%



Es

Ec,eff

δ = kI [δLOADS + kS δεcs]≤ 

δLOADS = K (20)

δεcs = Kcs εcs 

L
a

L2

8

1
12

5

384

qqpL4

Ec,eff          bh3

1
12

bh3

h
2

h
2

d– –(h–d )As –As

where:
K is a factor that considers the support conditions for the de-

flection due to uniformly distributed loads and can be deter-
mined from Eq. (21) (for a detailed derivation see [36]):

K =  (21)
fsimply,sup

freal,sup,cond

where:
fsimply,sup  is the linear elastic deflection of the simply sup-

ported member of arbitrary span subjected to a 
uniformly distributed load, and

freal,sup,cond is the linear elastic deflection of the member 
with the actual support conditions with the 
same arbitrary span and subjected to the same 
uniformly distributed load.

Kcs is a factor that considers the support conditions for the 
deflection due to shrinkage and can be determined from 
Expression (22) (for a detailed derivation see [36]):
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Figure 17. Ratio between long term cracked inertia and gross cross sectional inertia as a function of the long-term transformed reinforcement ratio.

Figure 18. Ratio between the equivalent and the uncracked first order moment of the reinforcement with respect to the centroid of the section as a 
function of the reinforcement ratio for different concrete strengths.



Kcs =  (22)
fsimply,sup

fcs,real,sup,cond

where:
fcs,simply,sup is the linear elastic deflection of the simply sup-

ported member of arbitrary span subjected to a 
constant curvature, and

fcs,real,sup,cond is the linear elastic deflection of the member 
with the actual support conditions with the 
same arbitrary span and subjected to a constant 
curvature.

Assuming that the provided reinforcement is that strictly 
needed in ULS, the value of the quasi-permanent load of a 
simply supported element can be determined from the ulti-
mate bending resistance as shown in Expression (23) as the 
product of the ultimate load and coefficient kDL (qqp=kDLqRd).

= = = =
qqp

qRd

LL
TL

LL
TL

LL
TL

LL
TL

LL
TL

LL
TL

1–

1–1–

(23)

MRd = qRd         = As  fyd  d– 0.5

qRd = As  fyd d  1 – 0.5 8
L2

L2

8
As  fyd

bfcd

As  fyd

bfcd

kDL

G+ψ2Q
γGG+γQQ

γG          γQ

γG

+ψ2 LL
TL

LL
TL

1– +ψ2

+γQ

= =
LL
TL

LL
TLLL

TL

1–Q
G+Q

G Q

In Expression (23) it is assumed that there is no need for com-
pression reinforcement in ULS. 

Introducing the value of qqp into Expression (20), and 
developing, the slenderness limit can be obtained as shown 
in Expression (24). This expression also assumes that there is 

no compression reinforcement but can be easily generalized 
for this case (see [36]). However, the effect of compression 
reinforcement on deflections is limited, and the increase in 
precision for this rare case is not worth the complication.

(24)

qqp = kDL qRd = kDL As  fyd d (1–0.5ω)

KkDL           fcd ω (1–0.5ω)+ks Kcs εcs          ρ

kI

kDL As  fyd d     (1–0.5ω)L4

+ ks Kcs  εcs

Ec,eff            bh3

L2

8

5
384

5
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8
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8
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2
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1–

–(h–d )As –A’s

A’s = 0

≤

≤ 1

The values included in Table 9.3 of FprEN 1992-1-1:2022 are 
derived from this expression assuming that the concrete class 
is C30, that a is 250 and that the quasipermanent live load is 
30% of the total live load. The creep coefficients implicit in kI 
were determined assuming the following conditions:
- The self-weight is applied at 7 days
- The superimposed dead load is 15% of the self-weight and 

is applied at 60 days
- The quasi-permanent live load is applied at 365 days
- The relative humidity is 50%
- The deflection is determined for a design life of 100 years

3.3. Slenderness limits for slabs

The Slenderness limits for slabs on isolated supports and on 
continuous supports can be obtained by multiplying the values 
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Figure 19. Ratio of the elastic deflection of a slab supported on 4 isolated columns and a simply supported beam as a function of parameter 1+(lmin/lmax)4.



of Table 9.3 by coefficients which are determined from the 
ratio of the linear elastic deflections of the slab and a simply 
supported beam of the same span.

Figure 19 shows that the ratio is a linear of the fourth 
power of the ratio between the shorter and longer spans. 
The ratio corresponding to the slenderness limits of the two 
support conditions (factor K) can the easily be determined as 
shown in Eq. (25):

(25)fslab,is ≈  1+         fbeam, lmax = fbeam, lbeam

1+         k                   = k                        =

lmin

lmax

lmin

lmax

lmax

d

lmax

d

lbeam

d

lbeam

d

lmin

lbeam

ql4max

EI
ql4beam

EI
1+     

1

lmin

lmax

1+     

1

lmin

lmax

1+     

1

lmin

lmax

=

=

For a slab supported on walls, Figure 20 shows the ratio of the 
deflection of the slab to the deflection of the simply supported 
beam as a function of 1-0.65 (lmin/lmax). The correlation line has a 
slope very close to 1.00 and a high coefficient of determination. 
With identical reasoning as above, the slenderness limit for 
slabs supported on walls is given in Eq. (26):

(26)lmax

d
lbeam

d 1– 0.65

1
lmin

lmax

=

4.
conclusions

In this paper, the main changes in the formulations for cracking 
and deflections introduced in FprEN 1992-1-1:2022 have 
been presented and justified. 

The main changes in the cracking formulation introduce 
relevant factors to consider several effects that have been 
ignored or misrepresented in previous formulations. The 
main effects are the effect of the bond conditions, the uneven 
distribution of stresses in elements subjected to bending, and 
the increase in the crack width due to curvature from the level 
of the bar to the most tensioned fibre. It is shown that their 
consideration leads to a reduction the scatter of the model 
when compared to experiments. 

For deflection control, the main changes consist in the 
inclusion of correction for the slenderness limits to deal with 
slabs supported on columns and supported at the edges and 
the introduction of a simplified method which allows to obtain 
a justified value of the deflection from results of a linear elastic 
calculation. Globally, the changes lead to an improvement of 
ease-of-use.
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